Характеристики солнечных батарей

Расчет солнечных батарей

Перед монтажом любого объекта требуется составление проекта и выполнение предварительных расчетов. Только таким образом возможно добиться максимальных результатов от запланированного мероприятия, установить объем предстоящих материальных затрат. Поэтому при проектировании альтернативных энергетических систем, большое значение имеет точный расчет солнечных батарей, без которого возможны значительные отклонения от нормативов и значительное снижение эффективности данных устройств.

  1. Комплектация солнечной батареи
  2. Исходные данные для расчетов
  3. Расчет солнечных панелей
  4. Как рассчитать параметры аккумулятора
  5. Расчет и выбор инвертора

Комплектация солнечной батареи

Для того, чтобы максимально точно рассчитать солнечную энергетическую систему, необходимо знать, какие элементы входят в ее состав. Все они используются в комплексе и позволяют наиболее эффективно преобразовывать энергию солнца в электрический ток.

Стандартный комплект включает в себя:

  • Основной элемент – солнечные батареи для дома. Главная функция заключается в приеме солнечного излучения и его последующем преобразовании в электроэнергию. Основой конструкции являются фотоэлектрические элементы, способные удерживать излучение в течение длительного времени, требующегося для преобразования. Поэтому большое значение имеет точный расчет мощности солнечных батарей.
  • Инвертор. Преобразует постоянный ток солнечной панели в переменный, пригодный для работы потребителей. Полученное напряжение составляет 220 вольт.
  • Аккумуляторная батарея. Накапливает электроэнергию, а потом отдает ее в ночное время, при плохой погоде или внезапном отключении основной сети. Электричество из аккумулятора поступает в инвертор и превращается в переменный ток.
  • Контроллер. Управляет процессом зарядки аккумулятора, контролирует уровень заряда и разряда батареи. Подключается последовательно между солнечной батареей и аккумулятором, помогает поддерживать стабильность напряжения, поступающего в инвертор.

Для соединения компонентов системы между собой используются провода и специальные коннекторы. Обычно они входят в общий комплект.

Исходные данные для расчетов

Теперь рассмотрим как рассчитать солнечные батареи? Основной цифрой, необходимой для расчетов, является общее энергопотребление за определенный период. Если панели устанавливаются в электрифицированном загородном доме, то расход электроэнергии можно определить по счетчику. Однако, если электроснабжение подключается впервые, необходимо составить список всех имеющихся потребителей с указанием мощности каждого из них.

Например, холодильник потребляет 350 Вт/ч. В сутки он потребит около 1 кВт/ч, а в течение месяца – около 30 кВт/ч. Точно так же нужно подсчитать расход электроэнергии у осветительных и других приборов.

Полученные цифры складываются и вначале определяется общее суточное энергопотребление. Далее результат умножается на количество дней в месяце, что даст предварительное значение. К примеру, расход электроэнергии составляет 100 кВт/ч. Эта цифра будет относительной, поскольку к ней следует добавить еще 40% на потери в аккумуляторе и при работе инвертора.

Таким образом, общий расход электроэнергии в месяц составит 140 кВт/ч. В сутки получается 140:30:7 = 0,67 кВт/ч. Следовательно, необходимы панели с минимальной мощностью 0,7 кВт. Однако их будет достаточно лишь при хорошей погоде в летнее время и частично весной и осенью. Необходимо учесть и пасмурные дни, которые нередко наблюдаются и в летние месяцы. В связи с этим, требуется увеличить количество панелей не менее чем в два раза, в противном случае электроэнергия будет поступать с перебоями.

Максимальный эффект от солнечной системы получается лишь при условии согласованной работы всех составляющих частей и компонентов. В первую очередь нужно правильно рассчитать батареи на основе исходных данных, потому что именно от этих расчетов будет зависеть эффективность работы всей энергетической установки.

Расчет солнечных панелей

Необходимая мощность солнечных панелей рассчитывается в соответствии с погодой в данной местности и интенсивностью излучения в разное время года. Большое значение при расчетах имеют углы наклона по горизонтали и вертикали. Этот показатель особенно важен, если солнечная система будет эксплуатироваться круглый год. От этого будет зависеть и место размещения оборудования. Если угол наклона не требует регулировок, то панели могут размещаться непосредственно на крыше здания.

Наиболее ответственным мероприятием является расчет солнечных батарей, количества модулей и их эффективности. Данные берутся по самому лучшему и самому худшему месяцу с точки зрения энергоэффективности. Для расчетов стандартной инсоляции выбирается площадь в 1 м 2 , а для определения номинальной мощности требуется температура 25 С, при стандартном световом потоке 1 кВт/м 2 .

Определение производительности солнечной батареи в течение месяца осуществляется по следующей формуле: Есб = Еинс х Рсб х η/Ринс. Ее переменные соответствуют таким показателям:

  • Есб – количество энергии, вырабатываемое батареей.
  • Еинс – результат месячной инсоляции 1 м 2 .
  • η – величина общего КПД при передаче тока по проводникам.
  • Рсб – номинальная мощность солнечной панели.
  • Ринс – наибольшая мощность инсоляции 1 м 2 поверхности Земли.

При расчетах необходимо использовать единицы, одинаковые для всех показателей. Как правило, это джоули или киловатт-часы. Вычислив месячную инсоляцию, можно легко определить номинальную мощность солнечной панели, необходимую для выработки месячного объема электроэнергии: Рсб = Ринс х Есб / (Еинс х η).

Следует учесть, что напряжение на выходе солнечной панели будет на 15-40% выше напряжения аккумулятора. При использовании дешевых контроллеров эта разница неизменно уходит в потери. Более дорогие современные модели позволяют снизить этот показатель до 2-5%.

Солнечное излучение имеет разные показатели мощности, в зависимости от времени года и конкретного месяца. Номинальная мощность самой панели остается неизменной, поэтому большое значение приобретает правильный выбор места ее установки. Используя формулы, приведенные выше, можно определить лишь приблизительное количество модулей. Чтобы получить точное значение с необходимым запасом, берется двойное количество панелей с поправкой на ночное время, пасмурные дни, снегопады и другие факторы, снижающие эффективность системы.

Мощность солнечных батарей для частного дома и их производительность, во многом зависит от правильного выбора аккумуляторной батареи и инвертора.

Как рассчитать параметры аккумулятора

Аккумуляторные батареи составляют значительную часть стоимости всей солнечной системы. Прежде всего это связано с их регулярными заменами в процессе эксплуатации. Данные устройства обладают различной емкостью и сроками службы, поэтому и цена существенно отличается. Существует определенный порядок определяющий расчет солнечной батареи для дома, на основании которого каждый принимает решение о покупке той или иной модели аккумулятора.

Читайте также:  Ошибка 638 что это такое, причины появления, способы устранения

Основными параметрами любой батареи являются емкость и количество циклов зарядки и разрядки. Показательные расчеты можно выполнить на примере обычного кислотного аккумулятора, напряжение которого составляет 12 В, а емкость – 100 А*ч. Требуется вычислить возможный объем энергии, накопленной за 1 раз и количество той же энергии, отдаваемой за 1000 циклов, составляющих срок службы батареи. Все расчеты проводятся с учетом соблюдения правил и эксплуатационных норм. Например, повышение температуры сокращает срок службы устройства, а понижение приводит к уменьшению емкости.

Итак, сколько же энергии способен выдать аккумулятор полностью заряженный, а затем полностью разряженный. Для получения результата емкость в 100 А*ч умножается на среднее значение напряжения в 12 В. Итоговой цифрой будет 1200 Вт*ч или 1,2 кВт*ч. Однако на практике полная выработка аккумулятора считается при 40-процентном остатке от начальной емкости. В этом случае показатель средней емкости за весь период эксплуатации будет не 100 А*ч, а только 70. Поэтому реальный запас электроэнергии получается: 70 А*ч х 12 В = 840 Вт*ч или 0,84 кВт*ч.

В инструкции к батарее указано, что ее нежелательно разряжать больше чем на 20% от общей емкости. То есть, в темное время суток из аккумулятора можно без последствий взять только 0,164 кВт*ч. Нормальная разрядка батареи должна происходит в течение 20 часов. Если этот процесс происходит под влиянием высокого тока, то емкость снизится еще больше. Таким образом, наиболее оптимальный ток разрядки будет 5 А, а мощность на выходе батареи – 60 Вт. Если требуется решить задачу, как рассчитать мощность с повышенным значением, в этом случае количество аккумуляторов увеличивается или изменяется режим работы имеющихся устройств.

Большое значение в обеспечении рабочего режима придается правильным настройкам контроллера зарядки и разрядки. При достижении определенного напряжения заряда производится отключение, в противном случае начнется закипание электролита и его интенсивное испарение. Точно так же отключаются потребители, при разряде батареи до 80%. Соблюдение рабочего режима и рекомендаций производителя существенно увеличивает срок службы аккумуляторных батарей.

Расчет и выбор инвертора

При выборе преобразователя энергии учитывается его мощность и конфигурация выходного сигнала. Специалисты рекомендуют выбирать инверторы с номинальной мощностью, превышающей суммарную мощность потребителей на 25-30%. Также должна учитываться резко возрастающая нагрузка, когда одновременно включаются приборы с высокой пусковой мощностью.

Одним из основных показателей инвертора является его коэффициент полезного действия. Он зависит от потерь электроэнергии при выполнении сопутствующих процессов. В разных моделях он составляет 85-95%. Наиболее оптимальным вариантом считаются устройства с КПД не менее 90%.

Различные модификации инверторов могут использоваться в однофазных или трехфазных сетях. В первом случае стоимость устройств намного ниже, но они хорошо зарекомендовали себя при работе с потребителями общей мощностью до 10 кВт. Работа происходит с напряжением 220 в и частотой 50 Гц. Трехфазные приборы могут работать в более широком диапазоне напряжений – 315, 400 и 690 В. Наиболее качественные изделия комплектуются выходными трансформаторами для выравнивания параметров напряжения.

Необходимо учитывать зависимость технических характеристик инвертора и его массы. При наличии трансформатора на 1 кг приходится мощность в размере 100 Вт. В солнечных системах может использоваться разное количество преобразователей. В системах мощностью до 5 кВт с работой вполне справляется 1 инвертор. При более высокой мощности панелей на каждые дополнительные 5 кВт к общему рассчитанному количеству рекомендуется устанавливать еще один преобразователь. Некоторые модели инверторов укомплектованы собственными зарядными устройствами. Если один из них выйдет из строя, то система будет и дальше нормально работать.

Производительность системы во многом зависит от правильного подключения инвертора. Кабель, используемый для соединений, должен обладать минимально допустимой длиной и максимально возможным сечением. При значительном удалении потребителей длину кабеля придется наращивать. Его длина от солнечной батареи до инвертора должна быть не более 3 метров.

Все соединения выполняются максимально плотно. В противном случае может возникнуть искрение и вызвать пожар. Если устанавливается автономный инвертор в качестве бесперебойного источника питания, то в его цепи вместе с другими устройствами устанавливаются автоматические выключатели.

Солнечные батареи для дома

Калькулятор расчета аккумуляторной батареи для инвертора

Журнал «Все о Космосе»

Солнечная батарея (панель)

Солнечная батарея на МКС

Солнечная батарея — несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος , Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

История

Первые прототипы солнечных батарей были созданы итальянским фотохимиком армянского происхождения Джакомо Луиджи Чамичаном.

25 апреля 1954 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 году, в США был запущен первый спутник с солнечными батареями — Vanguard 1. Спустя всего пару месяцев, 15 мая 1958 года в СССР был запущен Спутник-3, также с использованием солнечных батарей.

Использование в космосе

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Эффективность фотоэлементов и модулей

Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D ). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может быть менее 100 Вт/м². С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях.

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд.

В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26—30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния.

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4х4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %, а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали фотоэлемент, использующий линзы Френеля с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 %. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46%.

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца.

Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200-300 нм) светом (т. е. электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85%.

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях

Тип Коэффициент фотоэлектрического преобразования, %
Кремниевые
Si (кристаллический) 24,7
Si (поликристаллический) 20,3
Si (тонкопленочная передача) 16,6
Si (тонкопленочный субмодуль) 10,4
III-V
GaAs (кристаллический) 25,1
GaAs (тонкопленочный) 24,5
GaAs (поликристаллический) 18,2
InP (кристаллический) 21,9
Тонкие пленки халькогенидов
CIGS (фотоэлемент) 19,9
CIGS (субмодуль) 16,6
CdTe (фотоэлемент) 16,5
Аморфный/Нанокристаллический кремний
Si (аморфный) 9,5
Si (нанокристаллический) 10,1
Фотохимические
На базе органических красителей 10,4
На базе органических красителей (субмодуль) 7,9
Органические
Органический полимер 5,15
Многослойные
GaInP/GaAs/Ge 32,0
GaInP/GaAs 30,3
GaAs/CIS (тонкопленочный) 25,8
a-Si/mc-Si (тонкий субмодуль) 11,7

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Производство

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определенное количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована.

Посчитать мощность солнечных батарей на квадратный метр

Если вы решили сэкономить на расходах электроэнергии и установить собственную солнечную электростанцию в доме или на даче, тогда необходимо начать с расчетов показателей как потребления энергии, так и мощности солнечных панелей. Это самый важный и трудоемкий процесс, который станет залогом правильной работы солнечной системы и выработки нужного количества тока для обеспечения всех потребностей. Кроме того, рассчитанные показатели смогут послужить основой для увеличения эффективности или экономии энергии.

Показатель мощности солнечной батареи

Если посмотреть описание разных моделей солнечных батарей, то можно обратить внимание, что показателем измерения выступает номинальная мощность (Вт). Этот показатель и будет служить главным критерием для оценки мощности солнечной батареи. Номинальная мощность указывается из расчета, что на 1 кв. метр панели будет поступать 1 кВт солнечной энергии. То есть вы сможете рассчитывать на такой показатель мощности батареи, если в месте, где расположена солнечная система, температура не менее 25 градусов, ориентация модулей на юг с учетом угла наклона и отсутствует затемнение.

Зачем нужен расчет мощности солнечных батарей

Сегодня на рынке представлено огромное количество солнечных батарей, они отличаются не только производителем и ценой, но и своими техническими характеристиками. Мощность – это главный показатель, от которого необходимо отталкиваться, если вы хотите получить выгоду от установки солнечной системы. Важно понимать, что неправильно произведенный расчет или и вовсе отсутствие каких-либо анализов по планируемой мощности могут привести к неудовлетворению ваших электрических потребностей в доме, тогда придется использовать дополнительное питание от сети либо ограничивать себя в электроприборах. В итоге сложная задумка с солнечными батареями теряет весь смысл.

Порядок расчета

Чтобы рассчитать необходимую мощность батареи, которая покроет ваши затраты электроэнергии, нужно провести ряд действий, основанных на точных расчетах.

Определение потребляемой энергии

Начинать надо в первую очередь с расчета необходимой энергии для обеспечения вашего дома. Сделать это можно двумя способами: первый – посмотреть на счетчике, сколько электроэнергии вы расходуете за месяц или в сутки, а второй – сделать более детальный расчет. Чтобы произвести второй вариант расчета, нужно взять бумагу с ручкой и составить список всех электроприборов, которые имеются у вас в доме. Количество потребляемой энергии каждым устройством нужно умножить на количество часов работы, а после все полученные показатели сложить и получить общий расход, который должны покрывать солнечные батареи.

Ниже приведены приблизительные значения самых часто используемых электроприборов в любом доме.

Электроприбор Ватт Сколько часов работы в сутки Вт/час
Холодильник 250 24 6000
Компьютер 100 4 400
Стиральная машина 500 1 500
Электрочайник 1000 0.3 300
Телевизор 150 6 900
Радиоприемник 4 2 8
Экономлампа 1 20 6 120
Экономлампа 2 15 4 60
Экономлампа 3 10 2 20

Просуммировав последнюю колонку в таблице, вы сможете посчитать суточный расход электроэнергии. Однако здесь не все так просто. Это не будет конечная цифра для выбора мощности солнечной батареи и их количества. Дополнительно нужно будет прибавить около 30% потребляемой энергии на обслуживание обязательных устройств для работы солнечной системы – аккумулятора и инвертора. Кроме того, солнечными батареями генерируется постоянный ток, который впоследствии при помощи инвертора перерабатывается на переменный с повышением напряжения для обслуживания дома (220В), где еще теряется около 20%. И еще нужно прибавить около 10%, которые пойдут на пусковую мощность электроприборов. Так как при запуске техника первые несколько минут потребляет в 3, а то и в 5 раз больше заявленной энергии.

Уровень инсоляции

Суть солнечных батарей заключается в выработке энергии за счет воздействия лучей солнца на фотоэлементы со специальным составом. Чем больше солнечная радиация, тем выше производительность панелей. Максимальная эффективность зафиксирована при попадании лучей на поверхность пластин под углом 90 градусов, то есть перпендикулярно. Соответственно ночью энергия не вырабатывается, а используется та, которая накопилась в аккумуляторе за дневное время. Поэтому очень важно правильно установить солнечную панель и рассчитать ее работоспособность в зависимости от климата того или иного региона.

Уровень солнечной инсоляции – это еще один немаловажный показатель, который необходимо учитывать при определении мощности солнечной батареи. В каждом регионе он разный и дает четкое понятие, сколько количества солнечного тепла приходится на единицу площади панели. Если вы проживаете в регионе с небольшим уровнем инсоляции, тогда вам нужно будет приобретать либо более мощное устройство, либо в большем количестве для полного обеспечения дома электроэнергией. Рассчитывать самостоятельно показатель инсоляции не нужно. Его значение представлено в специальных справочниках, которые можно найти без проблем в интернете. Подобная информация также представлена на метеорологических сайтах. Указанная информация может быть представлена как за год, так и отдельно по месяцам (для крупных городов).

Выбор мощности панелей

В зависимости от рассчитанного количества потребляемой энергии количество солнечных батарей может быть разным. Также следует учитывать, какие задачи возложены на батарею – полная продуктивность или использование ее в качестве дополнительного источника питания, если в вашем доме часто бывают перебои. Если вы хотите покрыть все электрорасходы в доме, тогда придется хорошо потратиться и приобретать устройства с высокой мощностью и продуктивностью.

Мощность панели напрямую будет зависеть от количества потребляемой энергии как электроприборами в доме, так и техническими устройствами, которые являются обязательными для работы солнечной станции. Здесь нельзя не учесть и количество солнечных дней в месяце, уровень инсоляции, частоту смены угла наклона. Максимальная производительность панели наблюдается не более 7 часов в сутки и то при условии, что небо чистое, а ночью и вовсе не будет никакой выработки, соответственно, при соотнесении расходуемой энергии с мощностью батареи нельзя приравнивать эти два показателя. Мощность должна быть на 30-40% больше.

Для примера можно взять батарею с указанной мощностью в 1кВт. Это значение нужно умножить на количество часов работы панели с максимальной производительностью, приплюсовать дополнительные расходы на снабжение инвертора и аккумулятора, а также то время в сутках, когда солнечный свет отсутствует. В результате вы сможете получить выработку одной батареи. Если показатель слишком маленький, тогда нужно присмотреться к батареям с более высокой мощностью, однако и цена их будет выше.

Расчет мощности солнечных батарей

Расчет количества панелей

Итак, мы определились, что мощность панелей измеряется в Вт. Чтобы произвести расчет, нам понадобятся все ранее полученные значения, а именно:

  • Количество потребляемой электроэнергии.
  • Уровень инсоляции в вашем регионе.
  • Мощность одной батареи.

Формула для расчета выглядит следующим образом:

W = k*Pw*E/1000, где

к – фиксированное значение/коэффициент 0,5 в летний период и 0,7 в зимний.

Е – значение инсоляции за выбранный период.

Итак, представим, что вы просчитали суточное потребление энергии, которое равно 5600 Вт. Скорректируем это значение на 30% с учетом потребностей инвертора, аккумулятора и преобразования энергии. В результате получается 5600*1,3=7280Вт, можно округлить до 7300 Вт. Теперь посмотрим показатель солнечной радиации для конкретного города, например, он равняется 0,79 для зимы и 4,5 для лета. Стандартная мощность составляет 260Вт.

W зимой = 0,7*260*0,79=143Втч.

W летом = 0,5*260*4,5=585Втч.

Теперь делим общую потребность в электроэнергии на выработку солнечной батареи. Зимой, чтобы обеспечить весь дом электричеством, понадобится примерно 51 панель, а летом 13 штук мощностью в 260Вт и напряжением 24В. Так как полученное значение достаточно велико и для размещения 50 панелей понадобится большая площадь, целесообразнее купить панели с более высоким напряжением и мощностью.

Как увеличить эффективность работы солнечных батарей

Первый шаг, который пытается сделать любой владелец солнечных батарей с целью увеличить эффективность выработки электроэнергии – это заменить обычные электроприборы на экономные. Но, перед тем как это сделать, ознакомьтесь с основными рекомендациями специалистов, которые помогут повысить КПД батареи.

  • Следите, чтобы не происходило затемнения солнечного оборудования.
  • Придерживайтесь правил монтажа, от которых зависит производительность солнечных батарей.
  • Очищайте панели от грязи, пыли и наледи.
  • Старайтесь регулярно менять угол наклона панелей, чтобы солнечные лучи попадали перпендикулярно, в зависимости от месяца и времени года.
  • Используйте электроприборы классов А, А++, А+++.
  • Выбирайте правильные крепления для солнечных батарей.

Выполнять все предложенные рекомендации необходимо в комплексе. Если, к примеру, вы будете регулярно менять угол наклона панелей, но при этом забываете их очищать от грязи, то результат от ваших действий не появится. Солнечные батареи прослужат вам долго и бесперебойно при соблюдении правил эксплуатации, которые рекомендованы производителем. Если у вас возникли сложности при расчете, то вы всегда можете обратиться за помощью к специалисту по данным вопросам.

Ссылка на основную публикацию
Форд Куга 2017-2018 года в новом кузове комплектации, технические характеристики и цены 1
Ford Kuga 2018 фото, цена, комплектации, старт продаж в России Судьба популярного американского кроссовера Ford Kuga 2018 года в России...
Утренняя зарядка для мужчин комплекс упражнений для дома
Обзор беспроводной зарядки Sum DIAL; Wylsacom Просто лучшая в мире беспроводная зарядка! Как только айфоны получили возможность беспроводной зарядки, я...
Ухаживаю так, аж; тёща нервничает забавные объявления на; Почитать
Самые успешные объявления для быстрой продажи автомобиля Что нужно знать для того чтобы быстро и выгодно продать свой автомобиль, пусть...
Форд Куга 2018 �� новый кузов, цены, комплектации, фото, видео тест-драйв
Форд Куга 2018-2019 новая модель, кузов, цены, комплектации, фото, видео тест-драйв Компания Форд раньше не производила компактные кроссоверы, поэтому Куга...

Характеристики солнечных батарей

Расчет солнечных батарей

Перед монтажом любого объекта требуется составление проекта и выполнение предварительных расчетов. Только таким образом возможно добиться максимальных результатов от запланированного мероприятия, установить объем предстоящих материальных затрат. Поэтому при проектировании альтернативных энергетических систем, большое значение имеет точный расчет солнечных батарей, без которого возможны значительные отклонения от нормативов и значительное снижение эффективности данных устройств.

  1. Комплектация солнечной батареи
  2. Исходные данные для расчетов
  3. Расчет солнечных панелей
  4. Как рассчитать параметры аккумулятора
  5. Расчет и выбор инвертора

Комплектация солнечной батареи

Для того, чтобы максимально точно рассчитать солнечную энергетическую систему, необходимо знать, какие элементы входят в ее состав. Все они используются в комплексе и позволяют наиболее эффективно преобразовывать энергию солнца в электрический ток.

Стандартный комплект включает в себя:

  • Основной элемент – солнечные батареи для дома. Главная функция заключается в приеме солнечного излучения и его последующем преобразовании в электроэнергию. Основой конструкции являются фотоэлектрические элементы, способные удерживать излучение в течение длительного времени, требующегося для преобразования. Поэтому большое значение имеет точный расчет мощности солнечных батарей.
  • Инвертор. Преобразует постоянный ток солнечной панели в переменный, пригодный для работы потребителей. Полученное напряжение составляет 220 вольт.
  • Аккумуляторная батарея. Накапливает электроэнергию, а потом отдает ее в ночное время, при плохой погоде или внезапном отключении основной сети. Электричество из аккумулятора поступает в инвертор и превращается в переменный ток.
  • Контроллер. Управляет процессом зарядки аккумулятора, контролирует уровень заряда и разряда батареи. Подключается последовательно между солнечной батареей и аккумулятором, помогает поддерживать стабильность напряжения, поступающего в инвертор.

Для соединения компонентов системы между собой используются провода и специальные коннекторы. Обычно они входят в общий комплект.

Исходные данные для расчетов

Теперь рассмотрим как рассчитать солнечные батареи? Основной цифрой, необходимой для расчетов, является общее энергопотребление за определенный период. Если панели устанавливаются в электрифицированном загородном доме, то расход электроэнергии можно определить по счетчику. Однако, если электроснабжение подключается впервые, необходимо составить список всех имеющихся потребителей с указанием мощности каждого из них.

Например, холодильник потребляет 350 Вт/ч. В сутки он потребит около 1 кВт/ч, а в течение месяца – около 30 кВт/ч. Точно так же нужно подсчитать расход электроэнергии у осветительных и других приборов.

Полученные цифры складываются и вначале определяется общее суточное энергопотребление. Далее результат умножается на количество дней в месяце, что даст предварительное значение. К примеру, расход электроэнергии составляет 100 кВт/ч. Эта цифра будет относительной, поскольку к ней следует добавить еще 40% на потери в аккумуляторе и при работе инвертора.

Таким образом, общий расход электроэнергии в месяц составит 140 кВт/ч. В сутки получается 140:30:7 = 0,67 кВт/ч. Следовательно, необходимы панели с минимальной мощностью 0,7 кВт. Однако их будет достаточно лишь при хорошей погоде в летнее время и частично весной и осенью. Необходимо учесть и пасмурные дни, которые нередко наблюдаются и в летние месяцы. В связи с этим, требуется увеличить количество панелей не менее чем в два раза, в противном случае электроэнергия будет поступать с перебоями.

Максимальный эффект от солнечной системы получается лишь при условии согласованной работы всех составляющих частей и компонентов. В первую очередь нужно правильно рассчитать батареи на основе исходных данных, потому что именно от этих расчетов будет зависеть эффективность работы всей энергетической установки.

Расчет солнечных панелей

Необходимая мощность солнечных панелей рассчитывается в соответствии с погодой в данной местности и интенсивностью излучения в разное время года. Большое значение при расчетах имеют углы наклона по горизонтали и вертикали. Этот показатель особенно важен, если солнечная система будет эксплуатироваться круглый год. От этого будет зависеть и место размещения оборудования. Если угол наклона не требует регулировок, то панели могут размещаться непосредственно на крыше здания.

Наиболее ответственным мероприятием является расчет солнечных батарей, количества модулей и их эффективности. Данные берутся по самому лучшему и самому худшему месяцу с точки зрения энергоэффективности. Для расчетов стандартной инсоляции выбирается площадь в 1 м 2 , а для определения номинальной мощности требуется температура 25 С, при стандартном световом потоке 1 кВт/м 2 .

Определение производительности солнечной батареи в течение месяца осуществляется по следующей формуле: Есб = Еинс х Рсб х η/Ринс. Ее переменные соответствуют таким показателям:

  • Есб – количество энергии, вырабатываемое батареей.
  • Еинс – результат месячной инсоляции 1 м 2 .
  • η – величина общего КПД при передаче тока по проводникам.
  • Рсб – номинальная мощность солнечной панели.
  • Ринс – наибольшая мощность инсоляции 1 м 2 поверхности Земли.

При расчетах необходимо использовать единицы, одинаковые для всех показателей. Как правило, это джоули или киловатт-часы. Вычислив месячную инсоляцию, можно легко определить номинальную мощность солнечной панели, необходимую для выработки месячного объема электроэнергии: Рсб = Ринс х Есб / (Еинс х η).

Следует учесть, что напряжение на выходе солнечной панели будет на 15-40% выше напряжения аккумулятора. При использовании дешевых контроллеров эта разница неизменно уходит в потери. Более дорогие современные модели позволяют снизить этот показатель до 2-5%.

Солнечное излучение имеет разные показатели мощности, в зависимости от времени года и конкретного месяца. Номинальная мощность самой панели остается неизменной, поэтому большое значение приобретает правильный выбор места ее установки. Используя формулы, приведенные выше, можно определить лишь приблизительное количество модулей. Чтобы получить точное значение с необходимым запасом, берется двойное количество панелей с поправкой на ночное время, пасмурные дни, снегопады и другие факторы, снижающие эффективность системы.

Мощность солнечных батарей для частного дома и их производительность, во многом зависит от правильного выбора аккумуляторной батареи и инвертора.

Как рассчитать параметры аккумулятора

Аккумуляторные батареи составляют значительную часть стоимости всей солнечной системы. Прежде всего это связано с их регулярными заменами в процессе эксплуатации. Данные устройства обладают различной емкостью и сроками службы, поэтому и цена существенно отличается. Существует определенный порядок определяющий расчет солнечной батареи для дома, на основании которого каждый принимает решение о покупке той или иной модели аккумулятора.

Читайте также:  Вал отбора мощности МТЗ-82 устройство, принцип работы

Основными параметрами любой батареи являются емкость и количество циклов зарядки и разрядки. Показательные расчеты можно выполнить на примере обычного кислотного аккумулятора, напряжение которого составляет 12 В, а емкость – 100 А*ч. Требуется вычислить возможный объем энергии, накопленной за 1 раз и количество той же энергии, отдаваемой за 1000 циклов, составляющих срок службы батареи. Все расчеты проводятся с учетом соблюдения правил и эксплуатационных норм. Например, повышение температуры сокращает срок службы устройства, а понижение приводит к уменьшению емкости.

Итак, сколько же энергии способен выдать аккумулятор полностью заряженный, а затем полностью разряженный. Для получения результата емкость в 100 А*ч умножается на среднее значение напряжения в 12 В. Итоговой цифрой будет 1200 Вт*ч или 1,2 кВт*ч. Однако на практике полная выработка аккумулятора считается при 40-процентном остатке от начальной емкости. В этом случае показатель средней емкости за весь период эксплуатации будет не 100 А*ч, а только 70. Поэтому реальный запас электроэнергии получается: 70 А*ч х 12 В = 840 Вт*ч или 0,84 кВт*ч.

В инструкции к батарее указано, что ее нежелательно разряжать больше чем на 20% от общей емкости. То есть, в темное время суток из аккумулятора можно без последствий взять только 0,164 кВт*ч. Нормальная разрядка батареи должна происходит в течение 20 часов. Если этот процесс происходит под влиянием высокого тока, то емкость снизится еще больше. Таким образом, наиболее оптимальный ток разрядки будет 5 А, а мощность на выходе батареи – 60 Вт. Если требуется решить задачу, как рассчитать мощность с повышенным значением, в этом случае количество аккумуляторов увеличивается или изменяется режим работы имеющихся устройств.

Большое значение в обеспечении рабочего режима придается правильным настройкам контроллера зарядки и разрядки. При достижении определенного напряжения заряда производится отключение, в противном случае начнется закипание электролита и его интенсивное испарение. Точно так же отключаются потребители, при разряде батареи до 80%. Соблюдение рабочего режима и рекомендаций производителя существенно увеличивает срок службы аккумуляторных батарей.

Расчет и выбор инвертора

При выборе преобразователя энергии учитывается его мощность и конфигурация выходного сигнала. Специалисты рекомендуют выбирать инверторы с номинальной мощностью, превышающей суммарную мощность потребителей на 25-30%. Также должна учитываться резко возрастающая нагрузка, когда одновременно включаются приборы с высокой пусковой мощностью.

Одним из основных показателей инвертора является его коэффициент полезного действия. Он зависит от потерь электроэнергии при выполнении сопутствующих процессов. В разных моделях он составляет 85-95%. Наиболее оптимальным вариантом считаются устройства с КПД не менее 90%.

Различные модификации инверторов могут использоваться в однофазных или трехфазных сетях. В первом случае стоимость устройств намного ниже, но они хорошо зарекомендовали себя при работе с потребителями общей мощностью до 10 кВт. Работа происходит с напряжением 220 в и частотой 50 Гц. Трехфазные приборы могут работать в более широком диапазоне напряжений – 315, 400 и 690 В. Наиболее качественные изделия комплектуются выходными трансформаторами для выравнивания параметров напряжения.

Необходимо учитывать зависимость технических характеристик инвертора и его массы. При наличии трансформатора на 1 кг приходится мощность в размере 100 Вт. В солнечных системах может использоваться разное количество преобразователей. В системах мощностью до 5 кВт с работой вполне справляется 1 инвертор. При более высокой мощности панелей на каждые дополнительные 5 кВт к общему рассчитанному количеству рекомендуется устанавливать еще один преобразователь. Некоторые модели инверторов укомплектованы собственными зарядными устройствами. Если один из них выйдет из строя, то система будет и дальше нормально работать.

Производительность системы во многом зависит от правильного подключения инвертора. Кабель, используемый для соединений, должен обладать минимально допустимой длиной и максимально возможным сечением. При значительном удалении потребителей длину кабеля придется наращивать. Его длина от солнечной батареи до инвертора должна быть не более 3 метров.

Все соединения выполняются максимально плотно. В противном случае может возникнуть искрение и вызвать пожар. Если устанавливается автономный инвертор в качестве бесперебойного источника питания, то в его цепи вместе с другими устройствами устанавливаются автоматические выключатели.

Солнечные батареи для дома

Калькулятор расчета аккумуляторной батареи для инвертора

Журнал «Все о Космосе»

Солнечная батарея (панель)

Солнечная батарея на МКС

Солнечная батарея — несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος , Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

История

Первые прототипы солнечных батарей были созданы итальянским фотохимиком армянского происхождения Джакомо Луиджи Чамичаном.

25 апреля 1954 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 году, в США был запущен первый спутник с солнечными батареями — Vanguard 1. Спустя всего пару месяцев, 15 мая 1958 года в СССР был запущен Спутник-3, также с использованием солнечных батарей.

Использование в космосе

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Эффективность фотоэлементов и модулей

Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D ). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может быть менее 100 Вт/м². С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях.

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд.

В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26—30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния.

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4х4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %, а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали фотоэлемент, использующий линзы Френеля с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 %. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46%.

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца.

Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200-300 нм) светом (т. е. электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85%.

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях

Тип Коэффициент фотоэлектрического преобразования, %
Кремниевые
Si (кристаллический) 24,7
Si (поликристаллический) 20,3
Si (тонкопленочная передача) 16,6
Si (тонкопленочный субмодуль) 10,4
III-V
GaAs (кристаллический) 25,1
GaAs (тонкопленочный) 24,5
GaAs (поликристаллический) 18,2
InP (кристаллический) 21,9
Тонкие пленки халькогенидов
CIGS (фотоэлемент) 19,9
CIGS (субмодуль) 16,6
CdTe (фотоэлемент) 16,5
Аморфный/Нанокристаллический кремний
Si (аморфный) 9,5
Si (нанокристаллический) 10,1
Фотохимические
На базе органических красителей 10,4
На базе органических красителей (субмодуль) 7,9
Органические
Органический полимер 5,15
Многослойные
GaInP/GaAs/Ge 32,0
GaInP/GaAs 30,3
GaAs/CIS (тонкопленочный) 25,8
a-Si/mc-Si (тонкий субмодуль) 11,7

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Производство

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определенное количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована.

Посчитать мощность солнечных батарей на квадратный метр

Если вы решили сэкономить на расходах электроэнергии и установить собственную солнечную электростанцию в доме или на даче, тогда необходимо начать с расчетов показателей как потребления энергии, так и мощности солнечных панелей. Это самый важный и трудоемкий процесс, который станет залогом правильной работы солнечной системы и выработки нужного количества тока для обеспечения всех потребностей. Кроме того, рассчитанные показатели смогут послужить основой для увеличения эффективности или экономии энергии.

Показатель мощности солнечной батареи

Если посмотреть описание разных моделей солнечных батарей, то можно обратить внимание, что показателем измерения выступает номинальная мощность (Вт). Этот показатель и будет служить главным критерием для оценки мощности солнечной батареи. Номинальная мощность указывается из расчета, что на 1 кв. метр панели будет поступать 1 кВт солнечной энергии. То есть вы сможете рассчитывать на такой показатель мощности батареи, если в месте, где расположена солнечная система, температура не менее 25 градусов, ориентация модулей на юг с учетом угла наклона и отсутствует затемнение.

Зачем нужен расчет мощности солнечных батарей

Сегодня на рынке представлено огромное количество солнечных батарей, они отличаются не только производителем и ценой, но и своими техническими характеристиками. Мощность – это главный показатель, от которого необходимо отталкиваться, если вы хотите получить выгоду от установки солнечной системы. Важно понимать, что неправильно произведенный расчет или и вовсе отсутствие каких-либо анализов по планируемой мощности могут привести к неудовлетворению ваших электрических потребностей в доме, тогда придется использовать дополнительное питание от сети либо ограничивать себя в электроприборах. В итоге сложная задумка с солнечными батареями теряет весь смысл.

Порядок расчета

Чтобы рассчитать необходимую мощность батареи, которая покроет ваши затраты электроэнергии, нужно провести ряд действий, основанных на точных расчетах.

Определение потребляемой энергии

Начинать надо в первую очередь с расчета необходимой энергии для обеспечения вашего дома. Сделать это можно двумя способами: первый – посмотреть на счетчике, сколько электроэнергии вы расходуете за месяц или в сутки, а второй – сделать более детальный расчет. Чтобы произвести второй вариант расчета, нужно взять бумагу с ручкой и составить список всех электроприборов, которые имеются у вас в доме. Количество потребляемой энергии каждым устройством нужно умножить на количество часов работы, а после все полученные показатели сложить и получить общий расход, который должны покрывать солнечные батареи.

Ниже приведены приблизительные значения самых часто используемых электроприборов в любом доме.

Электроприбор Ватт Сколько часов работы в сутки Вт/час
Холодильник 250 24 6000
Компьютер 100 4 400
Стиральная машина 500 1 500
Электрочайник 1000 0.3 300
Телевизор 150 6 900
Радиоприемник 4 2 8
Экономлампа 1 20 6 120
Экономлампа 2 15 4 60
Экономлампа 3 10 2 20

Просуммировав последнюю колонку в таблице, вы сможете посчитать суточный расход электроэнергии. Однако здесь не все так просто. Это не будет конечная цифра для выбора мощности солнечной батареи и их количества. Дополнительно нужно будет прибавить около 30% потребляемой энергии на обслуживание обязательных устройств для работы солнечной системы – аккумулятора и инвертора. Кроме того, солнечными батареями генерируется постоянный ток, который впоследствии при помощи инвертора перерабатывается на переменный с повышением напряжения для обслуживания дома (220В), где еще теряется около 20%. И еще нужно прибавить около 10%, которые пойдут на пусковую мощность электроприборов. Так как при запуске техника первые несколько минут потребляет в 3, а то и в 5 раз больше заявленной энергии.

Уровень инсоляции

Суть солнечных батарей заключается в выработке энергии за счет воздействия лучей солнца на фотоэлементы со специальным составом. Чем больше солнечная радиация, тем выше производительность панелей. Максимальная эффективность зафиксирована при попадании лучей на поверхность пластин под углом 90 градусов, то есть перпендикулярно. Соответственно ночью энергия не вырабатывается, а используется та, которая накопилась в аккумуляторе за дневное время. Поэтому очень важно правильно установить солнечную панель и рассчитать ее работоспособность в зависимости от климата того или иного региона.

Уровень солнечной инсоляции – это еще один немаловажный показатель, который необходимо учитывать при определении мощности солнечной батареи. В каждом регионе он разный и дает четкое понятие, сколько количества солнечного тепла приходится на единицу площади панели. Если вы проживаете в регионе с небольшим уровнем инсоляции, тогда вам нужно будет приобретать либо более мощное устройство, либо в большем количестве для полного обеспечения дома электроэнергией. Рассчитывать самостоятельно показатель инсоляции не нужно. Его значение представлено в специальных справочниках, которые можно найти без проблем в интернете. Подобная информация также представлена на метеорологических сайтах. Указанная информация может быть представлена как за год, так и отдельно по месяцам (для крупных городов).

Выбор мощности панелей

В зависимости от рассчитанного количества потребляемой энергии количество солнечных батарей может быть разным. Также следует учитывать, какие задачи возложены на батарею – полная продуктивность или использование ее в качестве дополнительного источника питания, если в вашем доме часто бывают перебои. Если вы хотите покрыть все электрорасходы в доме, тогда придется хорошо потратиться и приобретать устройства с высокой мощностью и продуктивностью.

Мощность панели напрямую будет зависеть от количества потребляемой энергии как электроприборами в доме, так и техническими устройствами, которые являются обязательными для работы солнечной станции. Здесь нельзя не учесть и количество солнечных дней в месяце, уровень инсоляции, частоту смены угла наклона. Максимальная производительность панели наблюдается не более 7 часов в сутки и то при условии, что небо чистое, а ночью и вовсе не будет никакой выработки, соответственно, при соотнесении расходуемой энергии с мощностью батареи нельзя приравнивать эти два показателя. Мощность должна быть на 30-40% больше.

Для примера можно взять батарею с указанной мощностью в 1кВт. Это значение нужно умножить на количество часов работы панели с максимальной производительностью, приплюсовать дополнительные расходы на снабжение инвертора и аккумулятора, а также то время в сутках, когда солнечный свет отсутствует. В результате вы сможете получить выработку одной батареи. Если показатель слишком маленький, тогда нужно присмотреться к батареям с более высокой мощностью, однако и цена их будет выше.

Расчет мощности солнечных батарей

Расчет количества панелей

Итак, мы определились, что мощность панелей измеряется в Вт. Чтобы произвести расчет, нам понадобятся все ранее полученные значения, а именно:

  • Количество потребляемой электроэнергии.
  • Уровень инсоляции в вашем регионе.
  • Мощность одной батареи.

Формула для расчета выглядит следующим образом:

W = k*Pw*E/1000, где

к – фиксированное значение/коэффициент 0,5 в летний период и 0,7 в зимний.

Е – значение инсоляции за выбранный период.

Итак, представим, что вы просчитали суточное потребление энергии, которое равно 5600 Вт. Скорректируем это значение на 30% с учетом потребностей инвертора, аккумулятора и преобразования энергии. В результате получается 5600*1,3=7280Вт, можно округлить до 7300 Вт. Теперь посмотрим показатель солнечной радиации для конкретного города, например, он равняется 0,79 для зимы и 4,5 для лета. Стандартная мощность составляет 260Вт.

W зимой = 0,7*260*0,79=143Втч.

W летом = 0,5*260*4,5=585Втч.

Теперь делим общую потребность в электроэнергии на выработку солнечной батареи. Зимой, чтобы обеспечить весь дом электричеством, понадобится примерно 51 панель, а летом 13 штук мощностью в 260Вт и напряжением 24В. Так как полученное значение достаточно велико и для размещения 50 панелей понадобится большая площадь, целесообразнее купить панели с более высоким напряжением и мощностью.

Как увеличить эффективность работы солнечных батарей

Первый шаг, который пытается сделать любой владелец солнечных батарей с целью увеличить эффективность выработки электроэнергии – это заменить обычные электроприборы на экономные. Но, перед тем как это сделать, ознакомьтесь с основными рекомендациями специалистов, которые помогут повысить КПД батареи.

  • Следите, чтобы не происходило затемнения солнечного оборудования.
  • Придерживайтесь правил монтажа, от которых зависит производительность солнечных батарей.
  • Очищайте панели от грязи, пыли и наледи.
  • Старайтесь регулярно менять угол наклона панелей, чтобы солнечные лучи попадали перпендикулярно, в зависимости от месяца и времени года.
  • Используйте электроприборы классов А, А++, А+++.
  • Выбирайте правильные крепления для солнечных батарей.

Выполнять все предложенные рекомендации необходимо в комплексе. Если, к примеру, вы будете регулярно менять угол наклона панелей, но при этом забываете их очищать от грязи, то результат от ваших действий не появится. Солнечные батареи прослужат вам долго и бесперебойно при соблюдении правил эксплуатации, которые рекомендованы производителем. Если у вас возникли сложности при расчете, то вы всегда можете обратиться за помощью к специалисту по данным вопросам.

Ссылка на основную публикацию
Форд Куга 2017-2018 года в новом кузове комплектации, технические характеристики и цены 1
Ford Kuga 2018 фото, цена, комплектации, старт продаж в России Судьба популярного американского кроссовера Ford Kuga 2018 года в России...
Утренняя зарядка для мужчин комплекс упражнений для дома
Обзор беспроводной зарядки Sum DIAL; Wylsacom Просто лучшая в мире беспроводная зарядка! Как только айфоны получили возможность беспроводной зарядки, я...
Ухаживаю так, аж; тёща нервничает забавные объявления на; Почитать
Самые успешные объявления для быстрой продажи автомобиля Что нужно знать для того чтобы быстро и выгодно продать свой автомобиль, пусть...
Форд Куга 2018 �� новый кузов, цены, комплектации, фото, видео тест-драйв
Форд Куга 2018-2019 новая модель, кузов, цены, комплектации, фото, видео тест-драйв Компания Форд раньше не производила компактные кроссоверы, поэтому Куга...

Характеристики солнечных батарей

Расчет солнечных батарей

Перед монтажом любого объекта требуется составление проекта и выполнение предварительных расчетов. Только таким образом возможно добиться максимальных результатов от запланированного мероприятия, установить объем предстоящих материальных затрат. Поэтому при проектировании альтернативных энергетических систем, большое значение имеет точный расчет солнечных батарей, без которого возможны значительные отклонения от нормативов и значительное снижение эффективности данных устройств.

  1. Комплектация солнечной батареи
  2. Исходные данные для расчетов
  3. Расчет солнечных панелей
  4. Как рассчитать параметры аккумулятора
  5. Расчет и выбор инвертора

Комплектация солнечной батареи

Для того, чтобы максимально точно рассчитать солнечную энергетическую систему, необходимо знать, какие элементы входят в ее состав. Все они используются в комплексе и позволяют наиболее эффективно преобразовывать энергию солнца в электрический ток.

Стандартный комплект включает в себя:

  • Основной элемент – солнечные батареи для дома. Главная функция заключается в приеме солнечного излучения и его последующем преобразовании в электроэнергию. Основой конструкции являются фотоэлектрические элементы, способные удерживать излучение в течение длительного времени, требующегося для преобразования. Поэтому большое значение имеет точный расчет мощности солнечных батарей.
  • Инвертор. Преобразует постоянный ток солнечной панели в переменный, пригодный для работы потребителей. Полученное напряжение составляет 220 вольт.
  • Аккумуляторная батарея. Накапливает электроэнергию, а потом отдает ее в ночное время, при плохой погоде или внезапном отключении основной сети. Электричество из аккумулятора поступает в инвертор и превращается в переменный ток.
  • Контроллер. Управляет процессом зарядки аккумулятора, контролирует уровень заряда и разряда батареи. Подключается последовательно между солнечной батареей и аккумулятором, помогает поддерживать стабильность напряжения, поступающего в инвертор.

Для соединения компонентов системы между собой используются провода и специальные коннекторы. Обычно они входят в общий комплект.

Исходные данные для расчетов

Теперь рассмотрим как рассчитать солнечные батареи? Основной цифрой, необходимой для расчетов, является общее энергопотребление за определенный период. Если панели устанавливаются в электрифицированном загородном доме, то расход электроэнергии можно определить по счетчику. Однако, если электроснабжение подключается впервые, необходимо составить список всех имеющихся потребителей с указанием мощности каждого из них.

Например, холодильник потребляет 350 Вт/ч. В сутки он потребит около 1 кВт/ч, а в течение месяца – около 30 кВт/ч. Точно так же нужно подсчитать расход электроэнергии у осветительных и других приборов.

Полученные цифры складываются и вначале определяется общее суточное энергопотребление. Далее результат умножается на количество дней в месяце, что даст предварительное значение. К примеру, расход электроэнергии составляет 100 кВт/ч. Эта цифра будет относительной, поскольку к ней следует добавить еще 40% на потери в аккумуляторе и при работе инвертора.

Таким образом, общий расход электроэнергии в месяц составит 140 кВт/ч. В сутки получается 140:30:7 = 0,67 кВт/ч. Следовательно, необходимы панели с минимальной мощностью 0,7 кВт. Однако их будет достаточно лишь при хорошей погоде в летнее время и частично весной и осенью. Необходимо учесть и пасмурные дни, которые нередко наблюдаются и в летние месяцы. В связи с этим, требуется увеличить количество панелей не менее чем в два раза, в противном случае электроэнергия будет поступать с перебоями.

Максимальный эффект от солнечной системы получается лишь при условии согласованной работы всех составляющих частей и компонентов. В первую очередь нужно правильно рассчитать батареи на основе исходных данных, потому что именно от этих расчетов будет зависеть эффективность работы всей энергетической установки.

Расчет солнечных панелей

Необходимая мощность солнечных панелей рассчитывается в соответствии с погодой в данной местности и интенсивностью излучения в разное время года. Большое значение при расчетах имеют углы наклона по горизонтали и вертикали. Этот показатель особенно важен, если солнечная система будет эксплуатироваться круглый год. От этого будет зависеть и место размещения оборудования. Если угол наклона не требует регулировок, то панели могут размещаться непосредственно на крыше здания.

Наиболее ответственным мероприятием является расчет солнечных батарей, количества модулей и их эффективности. Данные берутся по самому лучшему и самому худшему месяцу с точки зрения энергоэффективности. Для расчетов стандартной инсоляции выбирается площадь в 1 м 2 , а для определения номинальной мощности требуется температура 25 С, при стандартном световом потоке 1 кВт/м 2 .

Определение производительности солнечной батареи в течение месяца осуществляется по следующей формуле: Есб = Еинс х Рсб х η/Ринс. Ее переменные соответствуют таким показателям:

  • Есб – количество энергии, вырабатываемое батареей.
  • Еинс – результат месячной инсоляции 1 м 2 .
  • η – величина общего КПД при передаче тока по проводникам.
  • Рсб – номинальная мощность солнечной панели.
  • Ринс – наибольшая мощность инсоляции 1 м 2 поверхности Земли.

При расчетах необходимо использовать единицы, одинаковые для всех показателей. Как правило, это джоули или киловатт-часы. Вычислив месячную инсоляцию, можно легко определить номинальную мощность солнечной панели, необходимую для выработки месячного объема электроэнергии: Рсб = Ринс х Есб / (Еинс х η).

Следует учесть, что напряжение на выходе солнечной панели будет на 15-40% выше напряжения аккумулятора. При использовании дешевых контроллеров эта разница неизменно уходит в потери. Более дорогие современные модели позволяют снизить этот показатель до 2-5%.

Солнечное излучение имеет разные показатели мощности, в зависимости от времени года и конкретного месяца. Номинальная мощность самой панели остается неизменной, поэтому большое значение приобретает правильный выбор места ее установки. Используя формулы, приведенные выше, можно определить лишь приблизительное количество модулей. Чтобы получить точное значение с необходимым запасом, берется двойное количество панелей с поправкой на ночное время, пасмурные дни, снегопады и другие факторы, снижающие эффективность системы.

Мощность солнечных батарей для частного дома и их производительность, во многом зависит от правильного выбора аккумуляторной батареи и инвертора.

Как рассчитать параметры аккумулятора

Аккумуляторные батареи составляют значительную часть стоимости всей солнечной системы. Прежде всего это связано с их регулярными заменами в процессе эксплуатации. Данные устройства обладают различной емкостью и сроками службы, поэтому и цена существенно отличается. Существует определенный порядок определяющий расчет солнечной батареи для дома, на основании которого каждый принимает решение о покупке той или иной модели аккумулятора.

Читайте также:  Как выбрать зимний омыватель стекол и какой лучше всего приобрести

Основными параметрами любой батареи являются емкость и количество циклов зарядки и разрядки. Показательные расчеты можно выполнить на примере обычного кислотного аккумулятора, напряжение которого составляет 12 В, а емкость – 100 А*ч. Требуется вычислить возможный объем энергии, накопленной за 1 раз и количество той же энергии, отдаваемой за 1000 циклов, составляющих срок службы батареи. Все расчеты проводятся с учетом соблюдения правил и эксплуатационных норм. Например, повышение температуры сокращает срок службы устройства, а понижение приводит к уменьшению емкости.

Итак, сколько же энергии способен выдать аккумулятор полностью заряженный, а затем полностью разряженный. Для получения результата емкость в 100 А*ч умножается на среднее значение напряжения в 12 В. Итоговой цифрой будет 1200 Вт*ч или 1,2 кВт*ч. Однако на практике полная выработка аккумулятора считается при 40-процентном остатке от начальной емкости. В этом случае показатель средней емкости за весь период эксплуатации будет не 100 А*ч, а только 70. Поэтому реальный запас электроэнергии получается: 70 А*ч х 12 В = 840 Вт*ч или 0,84 кВт*ч.

В инструкции к батарее указано, что ее нежелательно разряжать больше чем на 20% от общей емкости. То есть, в темное время суток из аккумулятора можно без последствий взять только 0,164 кВт*ч. Нормальная разрядка батареи должна происходит в течение 20 часов. Если этот процесс происходит под влиянием высокого тока, то емкость снизится еще больше. Таким образом, наиболее оптимальный ток разрядки будет 5 А, а мощность на выходе батареи – 60 Вт. Если требуется решить задачу, как рассчитать мощность с повышенным значением, в этом случае количество аккумуляторов увеличивается или изменяется режим работы имеющихся устройств.

Большое значение в обеспечении рабочего режима придается правильным настройкам контроллера зарядки и разрядки. При достижении определенного напряжения заряда производится отключение, в противном случае начнется закипание электролита и его интенсивное испарение. Точно так же отключаются потребители, при разряде батареи до 80%. Соблюдение рабочего режима и рекомендаций производителя существенно увеличивает срок службы аккумуляторных батарей.

Расчет и выбор инвертора

При выборе преобразователя энергии учитывается его мощность и конфигурация выходного сигнала. Специалисты рекомендуют выбирать инверторы с номинальной мощностью, превышающей суммарную мощность потребителей на 25-30%. Также должна учитываться резко возрастающая нагрузка, когда одновременно включаются приборы с высокой пусковой мощностью.

Одним из основных показателей инвертора является его коэффициент полезного действия. Он зависит от потерь электроэнергии при выполнении сопутствующих процессов. В разных моделях он составляет 85-95%. Наиболее оптимальным вариантом считаются устройства с КПД не менее 90%.

Различные модификации инверторов могут использоваться в однофазных или трехфазных сетях. В первом случае стоимость устройств намного ниже, но они хорошо зарекомендовали себя при работе с потребителями общей мощностью до 10 кВт. Работа происходит с напряжением 220 в и частотой 50 Гц. Трехфазные приборы могут работать в более широком диапазоне напряжений – 315, 400 и 690 В. Наиболее качественные изделия комплектуются выходными трансформаторами для выравнивания параметров напряжения.

Необходимо учитывать зависимость технических характеристик инвертора и его массы. При наличии трансформатора на 1 кг приходится мощность в размере 100 Вт. В солнечных системах может использоваться разное количество преобразователей. В системах мощностью до 5 кВт с работой вполне справляется 1 инвертор. При более высокой мощности панелей на каждые дополнительные 5 кВт к общему рассчитанному количеству рекомендуется устанавливать еще один преобразователь. Некоторые модели инверторов укомплектованы собственными зарядными устройствами. Если один из них выйдет из строя, то система будет и дальше нормально работать.

Производительность системы во многом зависит от правильного подключения инвертора. Кабель, используемый для соединений, должен обладать минимально допустимой длиной и максимально возможным сечением. При значительном удалении потребителей длину кабеля придется наращивать. Его длина от солнечной батареи до инвертора должна быть не более 3 метров.

Все соединения выполняются максимально плотно. В противном случае может возникнуть искрение и вызвать пожар. Если устанавливается автономный инвертор в качестве бесперебойного источника питания, то в его цепи вместе с другими устройствами устанавливаются автоматические выключатели.

Солнечные батареи для дома

Калькулятор расчета аккумуляторной батареи для инвертора

Журнал «Все о Космосе»

Солнечная батарея (панель)

Солнечная батарея на МКС

Солнечная батарея — несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος , Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

История

Первые прототипы солнечных батарей были созданы итальянским фотохимиком армянского происхождения Джакомо Луиджи Чамичаном.

25 апреля 1954 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 году, в США был запущен первый спутник с солнечными батареями — Vanguard 1. Спустя всего пару месяцев, 15 мая 1958 года в СССР был запущен Спутник-3, также с использованием солнечных батарей.

Использование в космосе

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Эффективность фотоэлементов и модулей

Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D ). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может быть менее 100 Вт/м². С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях.

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд.

В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26—30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния.

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4х4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %, а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали фотоэлемент, использующий линзы Френеля с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 %. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46%.

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца.

Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200-300 нм) светом (т. е. электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85%.

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях

Тип Коэффициент фотоэлектрического преобразования, %
Кремниевые
Si (кристаллический) 24,7
Si (поликристаллический) 20,3
Si (тонкопленочная передача) 16,6
Si (тонкопленочный субмодуль) 10,4
III-V
GaAs (кристаллический) 25,1
GaAs (тонкопленочный) 24,5
GaAs (поликристаллический) 18,2
InP (кристаллический) 21,9
Тонкие пленки халькогенидов
CIGS (фотоэлемент) 19,9
CIGS (субмодуль) 16,6
CdTe (фотоэлемент) 16,5
Аморфный/Нанокристаллический кремний
Si (аморфный) 9,5
Si (нанокристаллический) 10,1
Фотохимические
На базе органических красителей 10,4
На базе органических красителей (субмодуль) 7,9
Органические
Органический полимер 5,15
Многослойные
GaInP/GaAs/Ge 32,0
GaInP/GaAs 30,3
GaAs/CIS (тонкопленочный) 25,8
a-Si/mc-Si (тонкий субмодуль) 11,7

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Производство

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определенное количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована.

Посчитать мощность солнечных батарей на квадратный метр

Если вы решили сэкономить на расходах электроэнергии и установить собственную солнечную электростанцию в доме или на даче, тогда необходимо начать с расчетов показателей как потребления энергии, так и мощности солнечных панелей. Это самый важный и трудоемкий процесс, который станет залогом правильной работы солнечной системы и выработки нужного количества тока для обеспечения всех потребностей. Кроме того, рассчитанные показатели смогут послужить основой для увеличения эффективности или экономии энергии.

Показатель мощности солнечной батареи

Если посмотреть описание разных моделей солнечных батарей, то можно обратить внимание, что показателем измерения выступает номинальная мощность (Вт). Этот показатель и будет служить главным критерием для оценки мощности солнечной батареи. Номинальная мощность указывается из расчета, что на 1 кв. метр панели будет поступать 1 кВт солнечной энергии. То есть вы сможете рассчитывать на такой показатель мощности батареи, если в месте, где расположена солнечная система, температура не менее 25 градусов, ориентация модулей на юг с учетом угла наклона и отсутствует затемнение.

Зачем нужен расчет мощности солнечных батарей

Сегодня на рынке представлено огромное количество солнечных батарей, они отличаются не только производителем и ценой, но и своими техническими характеристиками. Мощность – это главный показатель, от которого необходимо отталкиваться, если вы хотите получить выгоду от установки солнечной системы. Важно понимать, что неправильно произведенный расчет или и вовсе отсутствие каких-либо анализов по планируемой мощности могут привести к неудовлетворению ваших электрических потребностей в доме, тогда придется использовать дополнительное питание от сети либо ограничивать себя в электроприборах. В итоге сложная задумка с солнечными батареями теряет весь смысл.

Порядок расчета

Чтобы рассчитать необходимую мощность батареи, которая покроет ваши затраты электроэнергии, нужно провести ряд действий, основанных на точных расчетах.

Определение потребляемой энергии

Начинать надо в первую очередь с расчета необходимой энергии для обеспечения вашего дома. Сделать это можно двумя способами: первый – посмотреть на счетчике, сколько электроэнергии вы расходуете за месяц или в сутки, а второй – сделать более детальный расчет. Чтобы произвести второй вариант расчета, нужно взять бумагу с ручкой и составить список всех электроприборов, которые имеются у вас в доме. Количество потребляемой энергии каждым устройством нужно умножить на количество часов работы, а после все полученные показатели сложить и получить общий расход, который должны покрывать солнечные батареи.

Ниже приведены приблизительные значения самых часто используемых электроприборов в любом доме.

Электроприбор Ватт Сколько часов работы в сутки Вт/час
Холодильник 250 24 6000
Компьютер 100 4 400
Стиральная машина 500 1 500
Электрочайник 1000 0.3 300
Телевизор 150 6 900
Радиоприемник 4 2 8
Экономлампа 1 20 6 120
Экономлампа 2 15 4 60
Экономлампа 3 10 2 20

Просуммировав последнюю колонку в таблице, вы сможете посчитать суточный расход электроэнергии. Однако здесь не все так просто. Это не будет конечная цифра для выбора мощности солнечной батареи и их количества. Дополнительно нужно будет прибавить около 30% потребляемой энергии на обслуживание обязательных устройств для работы солнечной системы – аккумулятора и инвертора. Кроме того, солнечными батареями генерируется постоянный ток, который впоследствии при помощи инвертора перерабатывается на переменный с повышением напряжения для обслуживания дома (220В), где еще теряется около 20%. И еще нужно прибавить около 10%, которые пойдут на пусковую мощность электроприборов. Так как при запуске техника первые несколько минут потребляет в 3, а то и в 5 раз больше заявленной энергии.

Уровень инсоляции

Суть солнечных батарей заключается в выработке энергии за счет воздействия лучей солнца на фотоэлементы со специальным составом. Чем больше солнечная радиация, тем выше производительность панелей. Максимальная эффективность зафиксирована при попадании лучей на поверхность пластин под углом 90 градусов, то есть перпендикулярно. Соответственно ночью энергия не вырабатывается, а используется та, которая накопилась в аккумуляторе за дневное время. Поэтому очень важно правильно установить солнечную панель и рассчитать ее работоспособность в зависимости от климата того или иного региона.

Уровень солнечной инсоляции – это еще один немаловажный показатель, который необходимо учитывать при определении мощности солнечной батареи. В каждом регионе он разный и дает четкое понятие, сколько количества солнечного тепла приходится на единицу площади панели. Если вы проживаете в регионе с небольшим уровнем инсоляции, тогда вам нужно будет приобретать либо более мощное устройство, либо в большем количестве для полного обеспечения дома электроэнергией. Рассчитывать самостоятельно показатель инсоляции не нужно. Его значение представлено в специальных справочниках, которые можно найти без проблем в интернете. Подобная информация также представлена на метеорологических сайтах. Указанная информация может быть представлена как за год, так и отдельно по месяцам (для крупных городов).

Выбор мощности панелей

В зависимости от рассчитанного количества потребляемой энергии количество солнечных батарей может быть разным. Также следует учитывать, какие задачи возложены на батарею – полная продуктивность или использование ее в качестве дополнительного источника питания, если в вашем доме часто бывают перебои. Если вы хотите покрыть все электрорасходы в доме, тогда придется хорошо потратиться и приобретать устройства с высокой мощностью и продуктивностью.

Мощность панели напрямую будет зависеть от количества потребляемой энергии как электроприборами в доме, так и техническими устройствами, которые являются обязательными для работы солнечной станции. Здесь нельзя не учесть и количество солнечных дней в месяце, уровень инсоляции, частоту смены угла наклона. Максимальная производительность панели наблюдается не более 7 часов в сутки и то при условии, что небо чистое, а ночью и вовсе не будет никакой выработки, соответственно, при соотнесении расходуемой энергии с мощностью батареи нельзя приравнивать эти два показателя. Мощность должна быть на 30-40% больше.

Для примера можно взять батарею с указанной мощностью в 1кВт. Это значение нужно умножить на количество часов работы панели с максимальной производительностью, приплюсовать дополнительные расходы на снабжение инвертора и аккумулятора, а также то время в сутках, когда солнечный свет отсутствует. В результате вы сможете получить выработку одной батареи. Если показатель слишком маленький, тогда нужно присмотреться к батареям с более высокой мощностью, однако и цена их будет выше.

Расчет мощности солнечных батарей

Расчет количества панелей

Итак, мы определились, что мощность панелей измеряется в Вт. Чтобы произвести расчет, нам понадобятся все ранее полученные значения, а именно:

  • Количество потребляемой электроэнергии.
  • Уровень инсоляции в вашем регионе.
  • Мощность одной батареи.

Формула для расчета выглядит следующим образом:

W = k*Pw*E/1000, где

к – фиксированное значение/коэффициент 0,5 в летний период и 0,7 в зимний.

Е – значение инсоляции за выбранный период.

Итак, представим, что вы просчитали суточное потребление энергии, которое равно 5600 Вт. Скорректируем это значение на 30% с учетом потребностей инвертора, аккумулятора и преобразования энергии. В результате получается 5600*1,3=7280Вт, можно округлить до 7300 Вт. Теперь посмотрим показатель солнечной радиации для конкретного города, например, он равняется 0,79 для зимы и 4,5 для лета. Стандартная мощность составляет 260Вт.

W зимой = 0,7*260*0,79=143Втч.

W летом = 0,5*260*4,5=585Втч.

Теперь делим общую потребность в электроэнергии на выработку солнечной батареи. Зимой, чтобы обеспечить весь дом электричеством, понадобится примерно 51 панель, а летом 13 штук мощностью в 260Вт и напряжением 24В. Так как полученное значение достаточно велико и для размещения 50 панелей понадобится большая площадь, целесообразнее купить панели с более высоким напряжением и мощностью.

Как увеличить эффективность работы солнечных батарей

Первый шаг, который пытается сделать любой владелец солнечных батарей с целью увеличить эффективность выработки электроэнергии – это заменить обычные электроприборы на экономные. Но, перед тем как это сделать, ознакомьтесь с основными рекомендациями специалистов, которые помогут повысить КПД батареи.

  • Следите, чтобы не происходило затемнения солнечного оборудования.
  • Придерживайтесь правил монтажа, от которых зависит производительность солнечных батарей.
  • Очищайте панели от грязи, пыли и наледи.
  • Старайтесь регулярно менять угол наклона панелей, чтобы солнечные лучи попадали перпендикулярно, в зависимости от месяца и времени года.
  • Используйте электроприборы классов А, А++, А+++.
  • Выбирайте правильные крепления для солнечных батарей.

Выполнять все предложенные рекомендации необходимо в комплексе. Если, к примеру, вы будете регулярно менять угол наклона панелей, но при этом забываете их очищать от грязи, то результат от ваших действий не появится. Солнечные батареи прослужат вам долго и бесперебойно при соблюдении правил эксплуатации, которые рекомендованы производителем. Если у вас возникли сложности при расчете, то вы всегда можете обратиться за помощью к специалисту по данным вопросам.

Ссылка на основную публикацию
Форд Куга 2017-2018 года в новом кузове комплектации, технические характеристики и цены 1
Ford Kuga 2018 фото, цена, комплектации, старт продаж в России Судьба популярного американского кроссовера Ford Kuga 2018 года в России...
Утренняя зарядка для мужчин комплекс упражнений для дома
Обзор беспроводной зарядки Sum DIAL; Wylsacom Просто лучшая в мире беспроводная зарядка! Как только айфоны получили возможность беспроводной зарядки, я...
Ухаживаю так, аж; тёща нервничает забавные объявления на; Почитать
Самые успешные объявления для быстрой продажи автомобиля Что нужно знать для того чтобы быстро и выгодно продать свой автомобиль, пусть...
Форд Куга 2018 �� новый кузов, цены, комплектации, фото, видео тест-драйв
Форд Куга 2018-2019 новая модель, кузов, цены, комплектации, фото, видео тест-драйв Компания Форд раньше не производила компактные кроссоверы, поэтому Куга...
Adblock detector