Использование энергии солнца на земле краткое сообщение интересные факты

Использование энергии солнца на Земле 2

Известно, что наше светило вырабатывает огромное количество энергии. За 10-15 минут солнце отдает Земле количество энергии, достаточное для обеспечения всего человечества электроэнергией на год. Качество солнечных батарей каждый год улучшатся, стоимость удешевляется. Все это хорошо, но что делать, если небо вдруг заволокло тучами, или наступила ночь… или вы живете на крайнем севере? Как использовать энергию солнца на Земле вне зависимости от погодных условий?
Давно уже обсуждается идея об использовании солнечной энергии с помощью панелей, установленных в космическом пространстве. Однако, с тех пор как была озвучена эта идея прошло уже лет тридцать. Недавно в этой области исследований обозначилось некоторое движение.
Би-би-си, самая большая космическая компания в Европе, активно ищет партнеров для осуществления миссии, которая будет заключаться в установке на орбите специальных солнечных панелей. Уже разработана специальная спутниковая система, оборудованная панелями, способными переправлять солнечную энергию к земле с помощью инфракрасного лазера, а на Земле инфракрасный свет будет преобразовываться в электричество. Так же ученые смогут произвести опыты в открытом космосе и понять как поведут себя материалы-и-их-поведение-при-сварке/chto-takoe-ink на орбите, на Земле суперсплавы на основе никель-хрома уже успели себя зарекомендовать с хорошей стороны.

Лабораторные исследования в этой сфере прошли очень успешно. Выгода от такого проекта очевидна и отдача может быть весьма солидной как в финансовом так и в научном плане. Наличие таких установок в космосе могло бы обеспечить постоянный ток энергии к Земле вне зависимости от времени суток и пасмурной погоды, что намного эффективнее установок солнечных батарей и ветряков. Кроме того, количество получаемой таким образом энергии во много раз больше, чем от аналогичных панелей, находящихся на поверхности Земли. В космосе нет облаков, пыли и атмосферных явлений, препятствующих получению солнечной энергии. Препятствие пока только одно – стоимость запуска и сборки солнечных станций на орбите.

Солнечная энергия

Солнечная энергия — общие понятия и принципы

Прежде всего, стоит отметить, что ресурсом для солнечной энергетики служит энергия солнечного света (солнечная энергия). Преобразовать которую можно либо в электрическую или же в тепловую энергию. Делается это при помощи специальных установок.

Исходя из расчётов учёных, можно сделать вывод, что за неделю на поверхность земли с солнца попадает такое количество энергии, которое в несколько раз превышает количество энергии вырабатываемой различными источниками на земле.

Несомненно, солнечная энергетика, это отрасль подающие большие надежды, но всё-таки она имеет две стороны медали.

С плюсами более или мене всё ясно. Это всеобщая доступность и неисчерпаемость ресурса. То к минусам стоит отнести такие аспекты как:

  • относительная зависимость от условий погоды и времени суток;
  • необходимость использовать аккумуляторы при получении солнечной энергии;
  • дороговизна оборудования при эксплуатации;
  • перепады температур в сторону повышения на поверхности установок для сбора энергии солнечного света.

Числа и показатели для излучения энергии солнца

Разберёмся для начала в терминах и основных показателях. Прежде всего, это солнечная постоянная, значение которой равняется 1367 Вт. Как раз такая цифра в соотношении с поступившим количеством энергии попадает на один квадратный метр поверхности нашей планеты. Естественно в виду того, что лучам солнца препятствуют слои атмосферы, проникает несколько меньшее количество энергии. К примеру, в экваториальной зоне оно равняется 1020 Вт. Прибавив к этому частые смены времени дня и ночи, угол падения лучей солнца, можно увидеть, что показатели снижаются ещё как минимум в три раза.

Ни раз, задавая себе вопрос: «откуда берётся солнечная энергия?», учёные разных стран и в разное время пытались ответить на него, применяя различные гипотезы и теории. Но, уже начиная с 19 века, подобный интерес приобрёл иной характер. И на сегодняшний день обозначились более конкретные и чёткие постулаты в отношении солнечных источников энергии. Удалось установить, что в ходе процесса взаимодействия четырёх атомов водорода с последующим переходом в состоянии ядра гелия и происходит это превращение с выделением большого количества энергии.

Рассмотрим для наглядности энергию, выделяемую при формировании одного грамма водорода. Соотнести её можно с энергией полученной при сжигании пятнадцати тонн бензина. Цифры говорят сами за себя.

Преобразование солнечной энергии

Само собой после получения подобной энергии от солнца, её требуется перевести в определённое состояние. Происходит это потому, что в настоящее время технологии не способны удовлетворить потребности и нужды людей в потреблении больших количеств солнечной энергии. В виду этих факторов и были изобретены различные солнечные батареи и солнечный коллектор. Применяя первые, можно генерировать и получать электрическую энергию. Если же рассматривать коллекторы, то они предназначены для тепловой энергии.

Читайте также:  Установка шатунов ваз 2110

Рассмотри наиболее востребованные способы преобразования энергии солнечного света:

  • фотовольтаика;
  • термовоздушная энергетика;
  • гелиотермальная энергетика;
  • с применением солнечных аэростатных электростанций.

Наибольшее распространение получил метод фотовольтаики. Данный метод состоит в использовании различных фотоэлектрических солнечных панелей. В простонародье получивших название солнечные батареи. При помощи них и происходит то самое преобразование солнечной в электроэнергию. Материалом, который используют при изготовлении подобных панелей, является кремний. Рабочая поверхность с толщиной не более одно милемметра.

Размещение и типы солнечных панелей

Такие панели можно размещать где угодно. Важно учитывать лишь большое количество солнечного света, которое должно без преград попадать на поверхность солнечной панели. Хорошим вариантом будут солнечные батареи для дома. Говоря попросту, это фото-пластины, которые устанавливаются либо на крыши загородных или многоквартирных домов.

Так же успешно применяются тонкоплёночные панели для преобразования солнечных лучей. Их разительным отличаем, является толщина, это даёт возможность размещать подобные панели практически в любом месте. Но коэффициент полезного действия у них на порядок ниже, чем у фото-пластин. Поэтому использование тонкоплёночных панелей будет целесообразно исключительно при небольшой поверхности для установки, например на балконе обычного многоэтажного дома или на крышке портативного компьютера.

Преобразование солнечной энергии в электроэнергию

Преобразование солнечной энергии в термовоздушной энергии происходит постепенно. Первый этап — это преобразование в энергию потока воздуха. Далее он направляется в турбогенератор.

Так же часто применяются аэростатные солнечные электростанции. Здесь генерирование пара воды происходит внутри самого аэростатного баллона.

Подобный эффект доступен для достижения посредством нагревания поверхности аэростата от солнечного света. На поверхность которого нанесено специальное покрытие обладающее селективно-поглощающим свойством. Основным преимуществом подобного способа является концентрация довольно внушительно объёма пара. Это позволяет работать станции в те моменты, когда по разным причинам генерация солнечной энергии не возможна. В ночное время или же когда не позволяют погодные условия.

Рассматривая принцип геотермальной энергии, нужно сразу отметить, что сам процесс так же крайне незамысловат. При попадании солнечных лучей на поверхность установки, происходит нагрев с дальнейшей фокусировкой и преображением принятого тепла в энергию.

Для понимания, приводим наиболее наглядный пример. Вода нагревается, а затем её можно подавать либо в отопительные батареи различных зданий, канализацию. Такой метод позволяет существенно снизить затраты газа и электроэнергии на подобные нужды. А в более крупных промышленных масштабах такой алгоритм уместен для получения электрической энергии, которую дают внушительные тепловые машины.

Сферы применения солнечной энергетики

Спектр применения энергии солнца крайне широк. Уже сейчас её используют на заводах, при строительстве, успешно применяют в химической промышленности, реализуют проекты отопительных установок воды для зданий и это лишь не многие примеры. Многие считаю, что применение солнечной энергетики — это процесс сравнительно недавний. Но, уже начиная с 1955 года, эти методы успешно применялись в строительстве автомобилей. Тогда и был выпущен первый прародитель нынешних электрокаров, которые успешно производят такие авто-гиганты как Honda, Toyota, Mitsubishi и другие.

Уже сегодня по всему миру в обиход входят установки при помощи, которых можно нагревать воду дома, готовить пищу и освещать жилые помещения. Ярким примером могут служить солнечные печи, состоящие из фольгированного картона, которые по инициативе ООН были предоставлены беженцам в разных странах переживающих сложную политическую обстановку. А на территории Узбекистана, например находится крупнейшая печь, успешно используемая при плавке различных металлов и термической обработке, но это уже совсем иные масштабы в отличие от бытовых.

Самыми необычными примерами где использовалась энергия, полученная от солнца являются:

  • Футляр с фотоэлементом для телефона, который одновременно является и зарядкой;
  • Сумка для похода (рюкзак), на задней стороне которой прикреплена солнечная панель, при помощи неё можно зарядить планшет, телефон, да и вообще любое устройство средних размеров;
  • Одежда с применением специального материала, который генерирует энергию от солнечного света, а затем при помощи специальных устройств направляет её в подключенные устройства.

Прорыв в будущее — основные направления использования энергии солнца на земле

Обновлено: 11 марта 2020

Где используется солнечная энергия?

О том, чтобы использовать солнечную энергию в своих целях, человек начал задумываться сравнительно недавно, хотя на практике пользовался ей на протяжении всей своей истории. Идея об аккумулировании и практическом применении возникла в начале XX века, но технологических возможностей для этого на то время не было. Прорыв совершился в конце века, когда появились фотоэлектрические панели, способные производить электроэнергию в ощутимых количествах. Вопрос важный и заслуживает подробного рассмотрения.

Читайте также:  Замена вакуумного усилителя ВАЗ 2110 своими руками, ремонт главного тормозного цилиндра LuxVAZ

Использование энергии Солнца на земле является повсеместным, хоть и неосознанным явлением. Оно настолько обыденно и привычно, что люди редко задумываются о возможностях и перспективах солнечной энергетики. Однако, специалисты в разных отраслях научной и производственной деятельности давно разрабатывают технологии, позволяющие получать бесплатную и неиссякаемую энергию.

Если несколько десятилетий назад все ограничивалось нагревом воды в емкостях для летнего душа на дачном участке, то сегодня существуют различные способы использования солнечной энергии, наиболее развитые в следующих отраслях:

  • космос и авиация;
  • сельское хозяйство;
  • обеспечение энергией спортивных и медицинских объектов;
  • освещение участков частных домов или городских улиц;
  • использование в быту;
  • электрификация экспедиций, передвижных исследовательских или военных пунктов и т.д.

Этот список не будет полным, если не назвать СЭС, электростанции, где используется солнечная энергия. В последние годы их немало построено в США, Испании, ЮАР и других странах. Их мощность пока еще не способна превзойти уровень ГЭС, но технологии не стоят на месте и перспективы развития весьма многообещающие. Можно с уверенностью сказать, что через пару десятков лет на вопрос: «Где используется энергия Солнца на Земле?» можно будет услышать ответ: «Везде».

Особенности применения

Свет и тепло Солнца используются с помощью различных технологических методик. Как правило, выработка электроэнергии имеет целью питание отдельных или массовых потребителей, а тепловая энергия служит для обогрева жилья, теплиц, промышленных и общественных помещений.

Использование солнечной энергии на Земле ведется по двум направлениям: пассивное и активное. Оба способа имеют свои особенности и возможности, которые следует рассмотреть внимательнее.

Пассивные системы

Пассивные системы — это различные сооружения или строения, в которых использование энергии Солнца происходит путем потребления. Например, существуют дома, построенные из специальных материалов, которые способны поглощать или перерабатывать полученную тепловую энергию. Обогрев таких зданий становится проще или в нем вовсе исчезает необходимость.

Необходимо понимать, что в виду имеются не какие-то современные и продвинутые материалы, созданные на высокотехнологическом оборудовании. Дома, образующие пассивные системы, создаются из обычной древесины, теплоизолирующих и светоизолирующих панелей. Даже обычная ориентация окон дома на южную сторону автоматически переводит дом в разряд пассивных гелиосистем.

Первым в истории зафиксированным случаем, когда использование солнечной энергии было сознательным действием, была постройка дома Плинием Младшим в Италии (100 г. Н. Э.). Слюдяные окна оказались эффективным теплоизолятором, способным удерживать тепловую энергию, полученную от Солнца.

В современном мире интерес к постройке зданий-пассивных гелиосистем то возрастает, то вновь падает. Энергетический кризис вынуждает активно искать способы получения дешевой альтернативной энергии, но при улучшениях экономической обстановки ситуация разворачивается в обратную сторону. Однако, общая обстановка демонстрирует постоянное развитие и продвижение гелиосистем в технике и быту.

Активные системы

Активные солнечные системы получают энергию и преобразуют ее тем или иным способом. В данном случае используются специально изготовленные приспособления и устройства, для которых получение, преобразование и передача энергии является основной и единственной задачей, а не дополнительной функцией, как у пассивных гелиосистем. Существуют довольно простые и более сложные конструкции, выполняющие разные задачи. По функционалу их можно разделить на фотоэлектрические элементы и солнечные коллекторы.

Первые занимаются выработкой электрического тока из энергии, полученной от нашего светила. Они обладают широкими возможностями и встречаются практически везде, где применяют энергию Солнца.

Вторые — коллекторы — используются только как источник тепловой энергии для отопительных систем частных домов или иных помещений относительно небольшого размера. И те, и другие устройства обладают собственными преимуществами и недостатками. Рассмотрим их подробнее.

Солнечные фотоэлементы

Фотоэлектрические элементы получают солнечную энергию и вырабатывают из нее электрический ток. Такова общая схема, на практике все несколько сложнее. Солнечные лучи, попадая на поверхность фотоэлементов, воздействуют на кремниевые пластины, в которых начинается процесс замещения электронов. Они начинают активно совершать p-n переход, т.е. появляется постоянный фототок. Остается только припаять провода к соответствующим контактам, и можно снимать постоянное напряжение определенной величины. Если собрать такие элементы в батарею, то в результате можно получать вполне существенный ток, пригодный для зарядки аккумуляторов или практического использования.

Выработка тока фотоэлементами нестабильна, зависит от внешних факторов — погоды, времени года и суток, наличия облачности. Кроме того, солнечные батареи дают постоянный ток. Для обеспечения потребителей электротоком со стандартными параметрами необходимо преобразовать полученное напряжение.

Поэтому обычный состав комплекса выглядит следующим образом:

Работа системы заключается в приеме солнечной энергии фотоэлементами и сбрасывании напряжения на аккумуляторы. Уровень заряда находится под управлением контроллера, который выполняет функции диспетчера и регулирует режим заряда и отдачи энергии. Преобразование постоянного тока в переменный выполняет инвертор, с которого питание подается на стандартные приборы потребления. Использование солнечной энергии таким способом наиболее эффективно, так как в результате получается универсальный вид, пригодный для питания большого количества установок, приборов и устройств.

Фотоэлементы, или солнечные батареи, как их называют в обиходе, бывают нескольких видов: кремниевые и пленочные.

Количество кремния в окружающей природе очень велико, чем и объясняется популярность этого типа фотоэлементов. Существуют разные виды кремниевых солнечных батарей:

  1. Монокристаллические. Их КПД приближается к 20%, что для современных фотоэлементов весьма высокий показатель. Производятся из очищенного материала, монокристалла, разрезанного на тонкие пластинки. Внешне такие панели похожи на соты или ячейки черного цвета. Самые дорогие и качественные
  2. Поликристаллические. При изготовлении используется срез из медленно охлажденного расплава кремния. Полученные пластинки состоят из множеств кристаллов, ориентированных в разные стороны. КПД — до 18%. Цвет ячеек синий, отличить их легко. Стоимость заметно ниже, чем у монокристаллических панелей
  3. Аморфные. Представляют собой слой силана (кремневодорода), нанесенного на гибкую подложку. КПД всего 5%, но способность поглощать солнечные лучи намного выше — почти в 20 раз, поэтому аморфные панели весьма хороши для пасмурной погоды. Стоимость самая низкая из всех кремниевых видов
Читайте также:  Что значит название «Lada XRAY» Почему «рентген» Клуб Lada XRAY

Пленочные батареи производятся из различных полимеров, способных демонстрировать полупроводниковый эффект. Их разрабатывают с целью снижения себестоимости производства фотоэлементов, а также для улучшения характеристик панелей. Существуют разные виды:

  • на основе теллурида кадмия;
  • на базе селенида меди-индия;
  • на полимерной основе.

Пока пленочные образцы уступают кремниевым как по КПД, так и по остальным показателям (кроме цены), но производители не теряют бодрости и уверяют пользователей в скором изменении ситуации.

Использование фотоэлементов для производства электротока позволяет получать количество энергии, достаточное для питания любых потребителей, главное — достаточное количество панелей. В этом заключается одно из основных преимуществ солнечной энергетики — способность расширяться путем наращивания количества светоприемных элементов, а не с помощью замены всего оборудования.

Солнечные коллекторы

Эти устройства действуют по совершенно иному принципу. Они не используют высокотехнологичных материалов, получая от Солнца только тепловую энергию. Принцип действия коллекторов основан на способности солнечных лучей заметно нагревать предметы. Наиболее простая модель представляет собой плоский ящик черного цвета, накрытый прозрачной крышкой. Темная поверхность принимает солнечное тепло, нагревается, но отдавать его в окружающую атмосферу не может — мешает эффект парника, образованный прозрачной крышкой. На практике конструкции солнечных коллекторов несколько отличаются:

  1. Открытые. Самые простые (если не примитивные) приемники, представляющие собой продолговатые лотки из черной пластмассы, наполненные водой. Лотки нагреваются и отдают тепло воде. Которая используется для летнего душа или подогрева воды в бассейне. Этот вид не может похвастаться ни КПД, ни долговечностью, но простота и возможность сделать открытые коллекторы самостоятельно дали определенную популярность
  2. Трубчатые. Приемниками энергии являются вакуумные стеклянные трубки. Они имеют коаксиальную конструкцию (тип «труба в трубе», между ними вакуум для теплоизоляции). Соединяются в распределитель и подключаются к отопительному контуру
  3. Плоские. Больше всего они напоминают вышеупомянутую модель — черный ящик с прозрачной крышкой. На поверхность днища плотно крепится трубка с водой, получающей тепловую энергию от контакта с нагретым материалом

Использовать солнечные коллекторы можно только в определенных условиях. Если стоит мороз, полезный эффект будет практически незаметен. Необходимо, чтобы температура воздуха было довольно высока, что делает использование солнечного обогрева доступным только в достаточно теплых регионах. Коллекторы используются только для обогрева помещений, поэтому их функционал и возможности заметно ниже.

Преимущества солнечных установок

  • Основным преимуществом является неограниченно высокий ресурс источника — Солнца. На самом деле, поток энергии имеет определенные пределы, но на нынешнем этапе развития технологии достичь этого предела совершенно невозможно.
  • Вторым преимуществом является отсутствие стоимости энергии. Она просто есть, и ей можно и нужно пользоваться.
  • Кроме того, появление источника предсказуемо и может быть заранее рассчитано с точностью до секунд, что заметно отличает его от других альтернативных видов энергии.

Проблемы использования солнечной энергии

Применение солнечной энергии имеет и некоторые проблемы. Основными из них являются отсутствие Солнца в ночное время и возможность возникновения облачности, осадков и прочих неблагоприятных погодных условий. Есть и еще важная и существенная проблема — низкая эффективность оборудования, в сочетании с высокой ценой. Эта проблема считается разрешимой, многие ученые и инженеры постоянно работают над ее решением.

Перспективы развития

Энергия Солнца на Земле неиссякаема. Это дает основания прочить постоянное развитие и продвижение технологий получения и переработки солнечной энергии, появление более эффективной аппаратуры, увеличение доли солнечной энергии в общем потреблении человечества. Статистика показывает, что за последние 10 лет в этом направлении сделан гигантский скачок, поэтому будущее у гелиоэнергетики во всех смыслах слова блестящее.

Ссылка на основную публикацию
Инструкция сигнализации tomahawk 434 mhz frequency — thinkbutdithud’s blog
Инструкция по эксплуатации сигнализации Tomahawk (Томагавк) как отключить и настроить Приобретя новый автомобиль, любой владелец, прежде всего, должен позаботиться о...
Инструкция Как Эффективно Бороться с Кротами на Участке
Эффективные ловушки для кротов - советы специалистов Существует ряд ловушек и капканов, которые помогают бороться с кротами, приносящими вред на...
Инструкция Пайка Алюминия в Домашних Условиях
Как паять алюминий оловом; Изобретения и самоделки Как запаять алюминиевые предметы обычным припоем Пайка алюминия стандартным припоем по обычной технологии...
Инструкция Шевроле Лачетти руководство по эксплуатации
Руководство по эксплуатации Шевроле Лачетти Руководство по эксплуатации Шевроле Лачетти — седана и хэтчбека. Шевроле Лачетти: руководство по эксплуатации седана...

Использование энергии солнца на земле краткое сообщение интересные факты

Использование энергии солнца на Земле 2

Известно, что наше светило вырабатывает огромное количество энергии. За 10-15 минут солнце отдает Земле количество энергии, достаточное для обеспечения всего человечества электроэнергией на год. Качество солнечных батарей каждый год улучшатся, стоимость удешевляется. Все это хорошо, но что делать, если небо вдруг заволокло тучами, или наступила ночь… или вы живете на крайнем севере? Как использовать энергию солнца на Земле вне зависимости от погодных условий?
Давно уже обсуждается идея об использовании солнечной энергии с помощью панелей, установленных в космическом пространстве. Однако, с тех пор как была озвучена эта идея прошло уже лет тридцать. Недавно в этой области исследований обозначилось некоторое движение.
Би-би-си, самая большая космическая компания в Европе, активно ищет партнеров для осуществления миссии, которая будет заключаться в установке на орбите специальных солнечных панелей. Уже разработана специальная спутниковая система, оборудованная панелями, способными переправлять солнечную энергию к земле с помощью инфракрасного лазера, а на Земле инфракрасный свет будет преобразовываться в электричество. Так же ученые смогут произвести опыты в открытом космосе и понять как поведут себя материалы-и-их-поведение-при-сварке/chto-takoe-ink на орбите, на Земле суперсплавы на основе никель-хрома уже успели себя зарекомендовать с хорошей стороны.

Лабораторные исследования в этой сфере прошли очень успешно. Выгода от такого проекта очевидна и отдача может быть весьма солидной как в финансовом так и в научном плане. Наличие таких установок в космосе могло бы обеспечить постоянный ток энергии к Земле вне зависимости от времени суток и пасмурной погоды, что намного эффективнее установок солнечных батарей и ветряков. Кроме того, количество получаемой таким образом энергии во много раз больше, чем от аналогичных панелей, находящихся на поверхности Земли. В космосе нет облаков, пыли и атмосферных явлений, препятствующих получению солнечной энергии. Препятствие пока только одно – стоимость запуска и сборки солнечных станций на орбите.

Солнечная энергия

Солнечная энергия — общие понятия и принципы

Прежде всего, стоит отметить, что ресурсом для солнечной энергетики служит энергия солнечного света (солнечная энергия). Преобразовать которую можно либо в электрическую или же в тепловую энергию. Делается это при помощи специальных установок.

Исходя из расчётов учёных, можно сделать вывод, что за неделю на поверхность земли с солнца попадает такое количество энергии, которое в несколько раз превышает количество энергии вырабатываемой различными источниками на земле.

Несомненно, солнечная энергетика, это отрасль подающие большие надежды, но всё-таки она имеет две стороны медали.

С плюсами более или мене всё ясно. Это всеобщая доступность и неисчерпаемость ресурса. То к минусам стоит отнести такие аспекты как:

  • относительная зависимость от условий погоды и времени суток;
  • необходимость использовать аккумуляторы при получении солнечной энергии;
  • дороговизна оборудования при эксплуатации;
  • перепады температур в сторону повышения на поверхности установок для сбора энергии солнечного света.

Числа и показатели для излучения энергии солнца

Разберёмся для начала в терминах и основных показателях. Прежде всего, это солнечная постоянная, значение которой равняется 1367 Вт. Как раз такая цифра в соотношении с поступившим количеством энергии попадает на один квадратный метр поверхности нашей планеты. Естественно в виду того, что лучам солнца препятствуют слои атмосферы, проникает несколько меньшее количество энергии. К примеру, в экваториальной зоне оно равняется 1020 Вт. Прибавив к этому частые смены времени дня и ночи, угол падения лучей солнца, можно увидеть, что показатели снижаются ещё как минимум в три раза.

Ни раз, задавая себе вопрос: «откуда берётся солнечная энергия?», учёные разных стран и в разное время пытались ответить на него, применяя различные гипотезы и теории. Но, уже начиная с 19 века, подобный интерес приобрёл иной характер. И на сегодняшний день обозначились более конкретные и чёткие постулаты в отношении солнечных источников энергии. Удалось установить, что в ходе процесса взаимодействия четырёх атомов водорода с последующим переходом в состоянии ядра гелия и происходит это превращение с выделением большого количества энергии.

Рассмотрим для наглядности энергию, выделяемую при формировании одного грамма водорода. Соотнести её можно с энергией полученной при сжигании пятнадцати тонн бензина. Цифры говорят сами за себя.

Преобразование солнечной энергии

Само собой после получения подобной энергии от солнца, её требуется перевести в определённое состояние. Происходит это потому, что в настоящее время технологии не способны удовлетворить потребности и нужды людей в потреблении больших количеств солнечной энергии. В виду этих факторов и были изобретены различные солнечные батареи и солнечный коллектор. Применяя первые, можно генерировать и получать электрическую энергию. Если же рассматривать коллекторы, то они предназначены для тепловой энергии.

Читайте также:  Как убрать ржавчину с металла в домашних условиях 1

Рассмотри наиболее востребованные способы преобразования энергии солнечного света:

  • фотовольтаика;
  • термовоздушная энергетика;
  • гелиотермальная энергетика;
  • с применением солнечных аэростатных электростанций.

Наибольшее распространение получил метод фотовольтаики. Данный метод состоит в использовании различных фотоэлектрических солнечных панелей. В простонародье получивших название солнечные батареи. При помощи них и происходит то самое преобразование солнечной в электроэнергию. Материалом, который используют при изготовлении подобных панелей, является кремний. Рабочая поверхность с толщиной не более одно милемметра.

Размещение и типы солнечных панелей

Такие панели можно размещать где угодно. Важно учитывать лишь большое количество солнечного света, которое должно без преград попадать на поверхность солнечной панели. Хорошим вариантом будут солнечные батареи для дома. Говоря попросту, это фото-пластины, которые устанавливаются либо на крыши загородных или многоквартирных домов.

Так же успешно применяются тонкоплёночные панели для преобразования солнечных лучей. Их разительным отличаем, является толщина, это даёт возможность размещать подобные панели практически в любом месте. Но коэффициент полезного действия у них на порядок ниже, чем у фото-пластин. Поэтому использование тонкоплёночных панелей будет целесообразно исключительно при небольшой поверхности для установки, например на балконе обычного многоэтажного дома или на крышке портативного компьютера.

Преобразование солнечной энергии в электроэнергию

Преобразование солнечной энергии в термовоздушной энергии происходит постепенно. Первый этап — это преобразование в энергию потока воздуха. Далее он направляется в турбогенератор.

Так же часто применяются аэростатные солнечные электростанции. Здесь генерирование пара воды происходит внутри самого аэростатного баллона.

Подобный эффект доступен для достижения посредством нагревания поверхности аэростата от солнечного света. На поверхность которого нанесено специальное покрытие обладающее селективно-поглощающим свойством. Основным преимуществом подобного способа является концентрация довольно внушительно объёма пара. Это позволяет работать станции в те моменты, когда по разным причинам генерация солнечной энергии не возможна. В ночное время или же когда не позволяют погодные условия.

Рассматривая принцип геотермальной энергии, нужно сразу отметить, что сам процесс так же крайне незамысловат. При попадании солнечных лучей на поверхность установки, происходит нагрев с дальнейшей фокусировкой и преображением принятого тепла в энергию.

Для понимания, приводим наиболее наглядный пример. Вода нагревается, а затем её можно подавать либо в отопительные батареи различных зданий, канализацию. Такой метод позволяет существенно снизить затраты газа и электроэнергии на подобные нужды. А в более крупных промышленных масштабах такой алгоритм уместен для получения электрической энергии, которую дают внушительные тепловые машины.

Сферы применения солнечной энергетики

Спектр применения энергии солнца крайне широк. Уже сейчас её используют на заводах, при строительстве, успешно применяют в химической промышленности, реализуют проекты отопительных установок воды для зданий и это лишь не многие примеры. Многие считаю, что применение солнечной энергетики — это процесс сравнительно недавний. Но, уже начиная с 1955 года, эти методы успешно применялись в строительстве автомобилей. Тогда и был выпущен первый прародитель нынешних электрокаров, которые успешно производят такие авто-гиганты как Honda, Toyota, Mitsubishi и другие.

Уже сегодня по всему миру в обиход входят установки при помощи, которых можно нагревать воду дома, готовить пищу и освещать жилые помещения. Ярким примером могут служить солнечные печи, состоящие из фольгированного картона, которые по инициативе ООН были предоставлены беженцам в разных странах переживающих сложную политическую обстановку. А на территории Узбекистана, например находится крупнейшая печь, успешно используемая при плавке различных металлов и термической обработке, но это уже совсем иные масштабы в отличие от бытовых.

Самыми необычными примерами где использовалась энергия, полученная от солнца являются:

  • Футляр с фотоэлементом для телефона, который одновременно является и зарядкой;
  • Сумка для похода (рюкзак), на задней стороне которой прикреплена солнечная панель, при помощи неё можно зарядить планшет, телефон, да и вообще любое устройство средних размеров;
  • Одежда с применением специального материала, который генерирует энергию от солнечного света, а затем при помощи специальных устройств направляет её в подключенные устройства.

Прорыв в будущее — основные направления использования энергии солнца на земле

Обновлено: 11 марта 2020

Где используется солнечная энергия?

О том, чтобы использовать солнечную энергию в своих целях, человек начал задумываться сравнительно недавно, хотя на практике пользовался ей на протяжении всей своей истории. Идея об аккумулировании и практическом применении возникла в начале XX века, но технологических возможностей для этого на то время не было. Прорыв совершился в конце века, когда появились фотоэлектрические панели, способные производить электроэнергию в ощутимых количествах. Вопрос важный и заслуживает подробного рассмотрения.

Читайте также:  Нагрузочные характеристики двигателей

Использование энергии Солнца на земле является повсеместным, хоть и неосознанным явлением. Оно настолько обыденно и привычно, что люди редко задумываются о возможностях и перспективах солнечной энергетики. Однако, специалисты в разных отраслях научной и производственной деятельности давно разрабатывают технологии, позволяющие получать бесплатную и неиссякаемую энергию.

Если несколько десятилетий назад все ограничивалось нагревом воды в емкостях для летнего душа на дачном участке, то сегодня существуют различные способы использования солнечной энергии, наиболее развитые в следующих отраслях:

  • космос и авиация;
  • сельское хозяйство;
  • обеспечение энергией спортивных и медицинских объектов;
  • освещение участков частных домов или городских улиц;
  • использование в быту;
  • электрификация экспедиций, передвижных исследовательских или военных пунктов и т.д.

Этот список не будет полным, если не назвать СЭС, электростанции, где используется солнечная энергия. В последние годы их немало построено в США, Испании, ЮАР и других странах. Их мощность пока еще не способна превзойти уровень ГЭС, но технологии не стоят на месте и перспективы развития весьма многообещающие. Можно с уверенностью сказать, что через пару десятков лет на вопрос: «Где используется энергия Солнца на Земле?» можно будет услышать ответ: «Везде».

Особенности применения

Свет и тепло Солнца используются с помощью различных технологических методик. Как правило, выработка электроэнергии имеет целью питание отдельных или массовых потребителей, а тепловая энергия служит для обогрева жилья, теплиц, промышленных и общественных помещений.

Использование солнечной энергии на Земле ведется по двум направлениям: пассивное и активное. Оба способа имеют свои особенности и возможности, которые следует рассмотреть внимательнее.

Пассивные системы

Пассивные системы — это различные сооружения или строения, в которых использование энергии Солнца происходит путем потребления. Например, существуют дома, построенные из специальных материалов, которые способны поглощать или перерабатывать полученную тепловую энергию. Обогрев таких зданий становится проще или в нем вовсе исчезает необходимость.

Необходимо понимать, что в виду имеются не какие-то современные и продвинутые материалы, созданные на высокотехнологическом оборудовании. Дома, образующие пассивные системы, создаются из обычной древесины, теплоизолирующих и светоизолирующих панелей. Даже обычная ориентация окон дома на южную сторону автоматически переводит дом в разряд пассивных гелиосистем.

Первым в истории зафиксированным случаем, когда использование солнечной энергии было сознательным действием, была постройка дома Плинием Младшим в Италии (100 г. Н. Э.). Слюдяные окна оказались эффективным теплоизолятором, способным удерживать тепловую энергию, полученную от Солнца.

В современном мире интерес к постройке зданий-пассивных гелиосистем то возрастает, то вновь падает. Энергетический кризис вынуждает активно искать способы получения дешевой альтернативной энергии, но при улучшениях экономической обстановки ситуация разворачивается в обратную сторону. Однако, общая обстановка демонстрирует постоянное развитие и продвижение гелиосистем в технике и быту.

Активные системы

Активные солнечные системы получают энергию и преобразуют ее тем или иным способом. В данном случае используются специально изготовленные приспособления и устройства, для которых получение, преобразование и передача энергии является основной и единственной задачей, а не дополнительной функцией, как у пассивных гелиосистем. Существуют довольно простые и более сложные конструкции, выполняющие разные задачи. По функционалу их можно разделить на фотоэлектрические элементы и солнечные коллекторы.

Первые занимаются выработкой электрического тока из энергии, полученной от нашего светила. Они обладают широкими возможностями и встречаются практически везде, где применяют энергию Солнца.

Вторые — коллекторы — используются только как источник тепловой энергии для отопительных систем частных домов или иных помещений относительно небольшого размера. И те, и другие устройства обладают собственными преимуществами и недостатками. Рассмотрим их подробнее.

Солнечные фотоэлементы

Фотоэлектрические элементы получают солнечную энергию и вырабатывают из нее электрический ток. Такова общая схема, на практике все несколько сложнее. Солнечные лучи, попадая на поверхность фотоэлементов, воздействуют на кремниевые пластины, в которых начинается процесс замещения электронов. Они начинают активно совершать p-n переход, т.е. появляется постоянный фототок. Остается только припаять провода к соответствующим контактам, и можно снимать постоянное напряжение определенной величины. Если собрать такие элементы в батарею, то в результате можно получать вполне существенный ток, пригодный для зарядки аккумуляторов или практического использования.

Выработка тока фотоэлементами нестабильна, зависит от внешних факторов — погоды, времени года и суток, наличия облачности. Кроме того, солнечные батареи дают постоянный ток. Для обеспечения потребителей электротоком со стандартными параметрами необходимо преобразовать полученное напряжение.

Поэтому обычный состав комплекса выглядит следующим образом:

Работа системы заключается в приеме солнечной энергии фотоэлементами и сбрасывании напряжения на аккумуляторы. Уровень заряда находится под управлением контроллера, который выполняет функции диспетчера и регулирует режим заряда и отдачи энергии. Преобразование постоянного тока в переменный выполняет инвертор, с которого питание подается на стандартные приборы потребления. Использование солнечной энергии таким способом наиболее эффективно, так как в результате получается универсальный вид, пригодный для питания большого количества установок, приборов и устройств.

Фотоэлементы, или солнечные батареи, как их называют в обиходе, бывают нескольких видов: кремниевые и пленочные.

Количество кремния в окружающей природе очень велико, чем и объясняется популярность этого типа фотоэлементов. Существуют разные виды кремниевых солнечных батарей:

  1. Монокристаллические. Их КПД приближается к 20%, что для современных фотоэлементов весьма высокий показатель. Производятся из очищенного материала, монокристалла, разрезанного на тонкие пластинки. Внешне такие панели похожи на соты или ячейки черного цвета. Самые дорогие и качественные
  2. Поликристаллические. При изготовлении используется срез из медленно охлажденного расплава кремния. Полученные пластинки состоят из множеств кристаллов, ориентированных в разные стороны. КПД — до 18%. Цвет ячеек синий, отличить их легко. Стоимость заметно ниже, чем у монокристаллических панелей
  3. Аморфные. Представляют собой слой силана (кремневодорода), нанесенного на гибкую подложку. КПД всего 5%, но способность поглощать солнечные лучи намного выше — почти в 20 раз, поэтому аморфные панели весьма хороши для пасмурной погоды. Стоимость самая низкая из всех кремниевых видов
Читайте также:  Бурбон Восстановление - Bourbon Restoration

Пленочные батареи производятся из различных полимеров, способных демонстрировать полупроводниковый эффект. Их разрабатывают с целью снижения себестоимости производства фотоэлементов, а также для улучшения характеристик панелей. Существуют разные виды:

  • на основе теллурида кадмия;
  • на базе селенида меди-индия;
  • на полимерной основе.

Пока пленочные образцы уступают кремниевым как по КПД, так и по остальным показателям (кроме цены), но производители не теряют бодрости и уверяют пользователей в скором изменении ситуации.

Использование фотоэлементов для производства электротока позволяет получать количество энергии, достаточное для питания любых потребителей, главное — достаточное количество панелей. В этом заключается одно из основных преимуществ солнечной энергетики — способность расширяться путем наращивания количества светоприемных элементов, а не с помощью замены всего оборудования.

Солнечные коллекторы

Эти устройства действуют по совершенно иному принципу. Они не используют высокотехнологичных материалов, получая от Солнца только тепловую энергию. Принцип действия коллекторов основан на способности солнечных лучей заметно нагревать предметы. Наиболее простая модель представляет собой плоский ящик черного цвета, накрытый прозрачной крышкой. Темная поверхность принимает солнечное тепло, нагревается, но отдавать его в окружающую атмосферу не может — мешает эффект парника, образованный прозрачной крышкой. На практике конструкции солнечных коллекторов несколько отличаются:

  1. Открытые. Самые простые (если не примитивные) приемники, представляющие собой продолговатые лотки из черной пластмассы, наполненные водой. Лотки нагреваются и отдают тепло воде. Которая используется для летнего душа или подогрева воды в бассейне. Этот вид не может похвастаться ни КПД, ни долговечностью, но простота и возможность сделать открытые коллекторы самостоятельно дали определенную популярность
  2. Трубчатые. Приемниками энергии являются вакуумные стеклянные трубки. Они имеют коаксиальную конструкцию (тип «труба в трубе», между ними вакуум для теплоизоляции). Соединяются в распределитель и подключаются к отопительному контуру
  3. Плоские. Больше всего они напоминают вышеупомянутую модель — черный ящик с прозрачной крышкой. На поверхность днища плотно крепится трубка с водой, получающей тепловую энергию от контакта с нагретым материалом

Использовать солнечные коллекторы можно только в определенных условиях. Если стоит мороз, полезный эффект будет практически незаметен. Необходимо, чтобы температура воздуха было довольно высока, что делает использование солнечного обогрева доступным только в достаточно теплых регионах. Коллекторы используются только для обогрева помещений, поэтому их функционал и возможности заметно ниже.

Преимущества солнечных установок

  • Основным преимуществом является неограниченно высокий ресурс источника — Солнца. На самом деле, поток энергии имеет определенные пределы, но на нынешнем этапе развития технологии достичь этого предела совершенно невозможно.
  • Вторым преимуществом является отсутствие стоимости энергии. Она просто есть, и ей можно и нужно пользоваться.
  • Кроме того, появление источника предсказуемо и может быть заранее рассчитано с точностью до секунд, что заметно отличает его от других альтернативных видов энергии.

Проблемы использования солнечной энергии

Применение солнечной энергии имеет и некоторые проблемы. Основными из них являются отсутствие Солнца в ночное время и возможность возникновения облачности, осадков и прочих неблагоприятных погодных условий. Есть и еще важная и существенная проблема — низкая эффективность оборудования, в сочетании с высокой ценой. Эта проблема считается разрешимой, многие ученые и инженеры постоянно работают над ее решением.

Перспективы развития

Энергия Солнца на Земле неиссякаема. Это дает основания прочить постоянное развитие и продвижение технологий получения и переработки солнечной энергии, появление более эффективной аппаратуры, увеличение доли солнечной энергии в общем потреблении человечества. Статистика показывает, что за последние 10 лет в этом направлении сделан гигантский скачок, поэтому будущее у гелиоэнергетики во всех смыслах слова блестящее.

Ссылка на основную публикацию
Инструкция сигнализации tomahawk 434 mhz frequency — thinkbutdithud’s blog
Инструкция по эксплуатации сигнализации Tomahawk (Томагавк) как отключить и настроить Приобретя новый автомобиль, любой владелец, прежде всего, должен позаботиться о...
Инструкция Как Эффективно Бороться с Кротами на Участке
Эффективные ловушки для кротов - советы специалистов Существует ряд ловушек и капканов, которые помогают бороться с кротами, приносящими вред на...
Инструкция Пайка Алюминия в Домашних Условиях
Как паять алюминий оловом; Изобретения и самоделки Как запаять алюминиевые предметы обычным припоем Пайка алюминия стандартным припоем по обычной технологии...
Инструкция Шевроле Лачетти руководство по эксплуатации
Руководство по эксплуатации Шевроле Лачетти Руководство по эксплуатации Шевроле Лачетти — седана и хэтчбека. Шевроле Лачетти: руководство по эксплуатации седана...

Использование энергии солнца на земле краткое сообщение интересные факты

Использование энергии солнца на Земле 2

Известно, что наше светило вырабатывает огромное количество энергии. За 10-15 минут солнце отдает Земле количество энергии, достаточное для обеспечения всего человечества электроэнергией на год. Качество солнечных батарей каждый год улучшатся, стоимость удешевляется. Все это хорошо, но что делать, если небо вдруг заволокло тучами, или наступила ночь… или вы живете на крайнем севере? Как использовать энергию солнца на Земле вне зависимости от погодных условий?
Давно уже обсуждается идея об использовании солнечной энергии с помощью панелей, установленных в космическом пространстве. Однако, с тех пор как была озвучена эта идея прошло уже лет тридцать. Недавно в этой области исследований обозначилось некоторое движение.
Би-би-си, самая большая космическая компания в Европе, активно ищет партнеров для осуществления миссии, которая будет заключаться в установке на орбите специальных солнечных панелей. Уже разработана специальная спутниковая система, оборудованная панелями, способными переправлять солнечную энергию к земле с помощью инфракрасного лазера, а на Земле инфракрасный свет будет преобразовываться в электричество. Так же ученые смогут произвести опыты в открытом космосе и понять как поведут себя материалы-и-их-поведение-при-сварке/chto-takoe-ink на орбите, на Земле суперсплавы на основе никель-хрома уже успели себя зарекомендовать с хорошей стороны.

Лабораторные исследования в этой сфере прошли очень успешно. Выгода от такого проекта очевидна и отдача может быть весьма солидной как в финансовом так и в научном плане. Наличие таких установок в космосе могло бы обеспечить постоянный ток энергии к Земле вне зависимости от времени суток и пасмурной погоды, что намного эффективнее установок солнечных батарей и ветряков. Кроме того, количество получаемой таким образом энергии во много раз больше, чем от аналогичных панелей, находящихся на поверхности Земли. В космосе нет облаков, пыли и атмосферных явлений, препятствующих получению солнечной энергии. Препятствие пока только одно – стоимость запуска и сборки солнечных станций на орбите.

Солнечная энергия

Солнечная энергия — общие понятия и принципы

Прежде всего, стоит отметить, что ресурсом для солнечной энергетики служит энергия солнечного света (солнечная энергия). Преобразовать которую можно либо в электрическую или же в тепловую энергию. Делается это при помощи специальных установок.

Исходя из расчётов учёных, можно сделать вывод, что за неделю на поверхность земли с солнца попадает такое количество энергии, которое в несколько раз превышает количество энергии вырабатываемой различными источниками на земле.

Несомненно, солнечная энергетика, это отрасль подающие большие надежды, но всё-таки она имеет две стороны медали.

С плюсами более или мене всё ясно. Это всеобщая доступность и неисчерпаемость ресурса. То к минусам стоит отнести такие аспекты как:

  • относительная зависимость от условий погоды и времени суток;
  • необходимость использовать аккумуляторы при получении солнечной энергии;
  • дороговизна оборудования при эксплуатации;
  • перепады температур в сторону повышения на поверхности установок для сбора энергии солнечного света.

Числа и показатели для излучения энергии солнца

Разберёмся для начала в терминах и основных показателях. Прежде всего, это солнечная постоянная, значение которой равняется 1367 Вт. Как раз такая цифра в соотношении с поступившим количеством энергии попадает на один квадратный метр поверхности нашей планеты. Естественно в виду того, что лучам солнца препятствуют слои атмосферы, проникает несколько меньшее количество энергии. К примеру, в экваториальной зоне оно равняется 1020 Вт. Прибавив к этому частые смены времени дня и ночи, угол падения лучей солнца, можно увидеть, что показатели снижаются ещё как минимум в три раза.

Ни раз, задавая себе вопрос: «откуда берётся солнечная энергия?», учёные разных стран и в разное время пытались ответить на него, применяя различные гипотезы и теории. Но, уже начиная с 19 века, подобный интерес приобрёл иной характер. И на сегодняшний день обозначились более конкретные и чёткие постулаты в отношении солнечных источников энергии. Удалось установить, что в ходе процесса взаимодействия четырёх атомов водорода с последующим переходом в состоянии ядра гелия и происходит это превращение с выделением большого количества энергии.

Рассмотрим для наглядности энергию, выделяемую при формировании одного грамма водорода. Соотнести её можно с энергией полученной при сжигании пятнадцати тонн бензина. Цифры говорят сами за себя.

Преобразование солнечной энергии

Само собой после получения подобной энергии от солнца, её требуется перевести в определённое состояние. Происходит это потому, что в настоящее время технологии не способны удовлетворить потребности и нужды людей в потреблении больших количеств солнечной энергии. В виду этих факторов и были изобретены различные солнечные батареи и солнечный коллектор. Применяя первые, можно генерировать и получать электрическую энергию. Если же рассматривать коллекторы, то они предназначены для тепловой энергии.

Читайте также:  Бурбон Восстановление - Bourbon Restoration

Рассмотри наиболее востребованные способы преобразования энергии солнечного света:

  • фотовольтаика;
  • термовоздушная энергетика;
  • гелиотермальная энергетика;
  • с применением солнечных аэростатных электростанций.

Наибольшее распространение получил метод фотовольтаики. Данный метод состоит в использовании различных фотоэлектрических солнечных панелей. В простонародье получивших название солнечные батареи. При помощи них и происходит то самое преобразование солнечной в электроэнергию. Материалом, который используют при изготовлении подобных панелей, является кремний. Рабочая поверхность с толщиной не более одно милемметра.

Размещение и типы солнечных панелей

Такие панели можно размещать где угодно. Важно учитывать лишь большое количество солнечного света, которое должно без преград попадать на поверхность солнечной панели. Хорошим вариантом будут солнечные батареи для дома. Говоря попросту, это фото-пластины, которые устанавливаются либо на крыши загородных или многоквартирных домов.

Так же успешно применяются тонкоплёночные панели для преобразования солнечных лучей. Их разительным отличаем, является толщина, это даёт возможность размещать подобные панели практически в любом месте. Но коэффициент полезного действия у них на порядок ниже, чем у фото-пластин. Поэтому использование тонкоплёночных панелей будет целесообразно исключительно при небольшой поверхности для установки, например на балконе обычного многоэтажного дома или на крышке портативного компьютера.

Преобразование солнечной энергии в электроэнергию

Преобразование солнечной энергии в термовоздушной энергии происходит постепенно. Первый этап — это преобразование в энергию потока воздуха. Далее он направляется в турбогенератор.

Так же часто применяются аэростатные солнечные электростанции. Здесь генерирование пара воды происходит внутри самого аэростатного баллона.

Подобный эффект доступен для достижения посредством нагревания поверхности аэростата от солнечного света. На поверхность которого нанесено специальное покрытие обладающее селективно-поглощающим свойством. Основным преимуществом подобного способа является концентрация довольно внушительно объёма пара. Это позволяет работать станции в те моменты, когда по разным причинам генерация солнечной энергии не возможна. В ночное время или же когда не позволяют погодные условия.

Рассматривая принцип геотермальной энергии, нужно сразу отметить, что сам процесс так же крайне незамысловат. При попадании солнечных лучей на поверхность установки, происходит нагрев с дальнейшей фокусировкой и преображением принятого тепла в энергию.

Для понимания, приводим наиболее наглядный пример. Вода нагревается, а затем её можно подавать либо в отопительные батареи различных зданий, канализацию. Такой метод позволяет существенно снизить затраты газа и электроэнергии на подобные нужды. А в более крупных промышленных масштабах такой алгоритм уместен для получения электрической энергии, которую дают внушительные тепловые машины.

Сферы применения солнечной энергетики

Спектр применения энергии солнца крайне широк. Уже сейчас её используют на заводах, при строительстве, успешно применяют в химической промышленности, реализуют проекты отопительных установок воды для зданий и это лишь не многие примеры. Многие считаю, что применение солнечной энергетики — это процесс сравнительно недавний. Но, уже начиная с 1955 года, эти методы успешно применялись в строительстве автомобилей. Тогда и был выпущен первый прародитель нынешних электрокаров, которые успешно производят такие авто-гиганты как Honda, Toyota, Mitsubishi и другие.

Уже сегодня по всему миру в обиход входят установки при помощи, которых можно нагревать воду дома, готовить пищу и освещать жилые помещения. Ярким примером могут служить солнечные печи, состоящие из фольгированного картона, которые по инициативе ООН были предоставлены беженцам в разных странах переживающих сложную политическую обстановку. А на территории Узбекистана, например находится крупнейшая печь, успешно используемая при плавке различных металлов и термической обработке, но это уже совсем иные масштабы в отличие от бытовых.

Самыми необычными примерами где использовалась энергия, полученная от солнца являются:

  • Футляр с фотоэлементом для телефона, который одновременно является и зарядкой;
  • Сумка для похода (рюкзак), на задней стороне которой прикреплена солнечная панель, при помощи неё можно зарядить планшет, телефон, да и вообще любое устройство средних размеров;
  • Одежда с применением специального материала, который генерирует энергию от солнечного света, а затем при помощи специальных устройств направляет её в подключенные устройства.

Прорыв в будущее — основные направления использования энергии солнца на земле

Обновлено: 11 марта 2020

Где используется солнечная энергия?

О том, чтобы использовать солнечную энергию в своих целях, человек начал задумываться сравнительно недавно, хотя на практике пользовался ей на протяжении всей своей истории. Идея об аккумулировании и практическом применении возникла в начале XX века, но технологических возможностей для этого на то время не было. Прорыв совершился в конце века, когда появились фотоэлектрические панели, способные производить электроэнергию в ощутимых количествах. Вопрос важный и заслуживает подробного рассмотрения.

Читайте также:  BMW i3 — электросила или борьба с «бензином в крови»

Использование энергии Солнца на земле является повсеместным, хоть и неосознанным явлением. Оно настолько обыденно и привычно, что люди редко задумываются о возможностях и перспективах солнечной энергетики. Однако, специалисты в разных отраслях научной и производственной деятельности давно разрабатывают технологии, позволяющие получать бесплатную и неиссякаемую энергию.

Если несколько десятилетий назад все ограничивалось нагревом воды в емкостях для летнего душа на дачном участке, то сегодня существуют различные способы использования солнечной энергии, наиболее развитые в следующих отраслях:

  • космос и авиация;
  • сельское хозяйство;
  • обеспечение энергией спортивных и медицинских объектов;
  • освещение участков частных домов или городских улиц;
  • использование в быту;
  • электрификация экспедиций, передвижных исследовательских или военных пунктов и т.д.

Этот список не будет полным, если не назвать СЭС, электростанции, где используется солнечная энергия. В последние годы их немало построено в США, Испании, ЮАР и других странах. Их мощность пока еще не способна превзойти уровень ГЭС, но технологии не стоят на месте и перспективы развития весьма многообещающие. Можно с уверенностью сказать, что через пару десятков лет на вопрос: «Где используется энергия Солнца на Земле?» можно будет услышать ответ: «Везде».

Особенности применения

Свет и тепло Солнца используются с помощью различных технологических методик. Как правило, выработка электроэнергии имеет целью питание отдельных или массовых потребителей, а тепловая энергия служит для обогрева жилья, теплиц, промышленных и общественных помещений.

Использование солнечной энергии на Земле ведется по двум направлениям: пассивное и активное. Оба способа имеют свои особенности и возможности, которые следует рассмотреть внимательнее.

Пассивные системы

Пассивные системы — это различные сооружения или строения, в которых использование энергии Солнца происходит путем потребления. Например, существуют дома, построенные из специальных материалов, которые способны поглощать или перерабатывать полученную тепловую энергию. Обогрев таких зданий становится проще или в нем вовсе исчезает необходимость.

Необходимо понимать, что в виду имеются не какие-то современные и продвинутые материалы, созданные на высокотехнологическом оборудовании. Дома, образующие пассивные системы, создаются из обычной древесины, теплоизолирующих и светоизолирующих панелей. Даже обычная ориентация окон дома на южную сторону автоматически переводит дом в разряд пассивных гелиосистем.

Первым в истории зафиксированным случаем, когда использование солнечной энергии было сознательным действием, была постройка дома Плинием Младшим в Италии (100 г. Н. Э.). Слюдяные окна оказались эффективным теплоизолятором, способным удерживать тепловую энергию, полученную от Солнца.

В современном мире интерес к постройке зданий-пассивных гелиосистем то возрастает, то вновь падает. Энергетический кризис вынуждает активно искать способы получения дешевой альтернативной энергии, но при улучшениях экономической обстановки ситуация разворачивается в обратную сторону. Однако, общая обстановка демонстрирует постоянное развитие и продвижение гелиосистем в технике и быту.

Активные системы

Активные солнечные системы получают энергию и преобразуют ее тем или иным способом. В данном случае используются специально изготовленные приспособления и устройства, для которых получение, преобразование и передача энергии является основной и единственной задачей, а не дополнительной функцией, как у пассивных гелиосистем. Существуют довольно простые и более сложные конструкции, выполняющие разные задачи. По функционалу их можно разделить на фотоэлектрические элементы и солнечные коллекторы.

Первые занимаются выработкой электрического тока из энергии, полученной от нашего светила. Они обладают широкими возможностями и встречаются практически везде, где применяют энергию Солнца.

Вторые — коллекторы — используются только как источник тепловой энергии для отопительных систем частных домов или иных помещений относительно небольшого размера. И те, и другие устройства обладают собственными преимуществами и недостатками. Рассмотрим их подробнее.

Солнечные фотоэлементы

Фотоэлектрические элементы получают солнечную энергию и вырабатывают из нее электрический ток. Такова общая схема, на практике все несколько сложнее. Солнечные лучи, попадая на поверхность фотоэлементов, воздействуют на кремниевые пластины, в которых начинается процесс замещения электронов. Они начинают активно совершать p-n переход, т.е. появляется постоянный фототок. Остается только припаять провода к соответствующим контактам, и можно снимать постоянное напряжение определенной величины. Если собрать такие элементы в батарею, то в результате можно получать вполне существенный ток, пригодный для зарядки аккумуляторов или практического использования.

Выработка тока фотоэлементами нестабильна, зависит от внешних факторов — погоды, времени года и суток, наличия облачности. Кроме того, солнечные батареи дают постоянный ток. Для обеспечения потребителей электротоком со стандартными параметрами необходимо преобразовать полученное напряжение.

Поэтому обычный состав комплекса выглядит следующим образом:

Работа системы заключается в приеме солнечной энергии фотоэлементами и сбрасывании напряжения на аккумуляторы. Уровень заряда находится под управлением контроллера, который выполняет функции диспетчера и регулирует режим заряда и отдачи энергии. Преобразование постоянного тока в переменный выполняет инвертор, с которого питание подается на стандартные приборы потребления. Использование солнечной энергии таким способом наиболее эффективно, так как в результате получается универсальный вид, пригодный для питания большого количества установок, приборов и устройств.

Фотоэлементы, или солнечные батареи, как их называют в обиходе, бывают нескольких видов: кремниевые и пленочные.

Количество кремния в окружающей природе очень велико, чем и объясняется популярность этого типа фотоэлементов. Существуют разные виды кремниевых солнечных батарей:

  1. Монокристаллические. Их КПД приближается к 20%, что для современных фотоэлементов весьма высокий показатель. Производятся из очищенного материала, монокристалла, разрезанного на тонкие пластинки. Внешне такие панели похожи на соты или ячейки черного цвета. Самые дорогие и качественные
  2. Поликристаллические. При изготовлении используется срез из медленно охлажденного расплава кремния. Полученные пластинки состоят из множеств кристаллов, ориентированных в разные стороны. КПД — до 18%. Цвет ячеек синий, отличить их легко. Стоимость заметно ниже, чем у монокристаллических панелей
  3. Аморфные. Представляют собой слой силана (кремневодорода), нанесенного на гибкую подложку. КПД всего 5%, но способность поглощать солнечные лучи намного выше — почти в 20 раз, поэтому аморфные панели весьма хороши для пасмурной погоды. Стоимость самая низкая из всех кремниевых видов
Читайте также:  Салонный фильтр Рено Каптур – выбор, покупка, замена Kapturcar

Пленочные батареи производятся из различных полимеров, способных демонстрировать полупроводниковый эффект. Их разрабатывают с целью снижения себестоимости производства фотоэлементов, а также для улучшения характеристик панелей. Существуют разные виды:

  • на основе теллурида кадмия;
  • на базе селенида меди-индия;
  • на полимерной основе.

Пока пленочные образцы уступают кремниевым как по КПД, так и по остальным показателям (кроме цены), но производители не теряют бодрости и уверяют пользователей в скором изменении ситуации.

Использование фотоэлементов для производства электротока позволяет получать количество энергии, достаточное для питания любых потребителей, главное — достаточное количество панелей. В этом заключается одно из основных преимуществ солнечной энергетики — способность расширяться путем наращивания количества светоприемных элементов, а не с помощью замены всего оборудования.

Солнечные коллекторы

Эти устройства действуют по совершенно иному принципу. Они не используют высокотехнологичных материалов, получая от Солнца только тепловую энергию. Принцип действия коллекторов основан на способности солнечных лучей заметно нагревать предметы. Наиболее простая модель представляет собой плоский ящик черного цвета, накрытый прозрачной крышкой. Темная поверхность принимает солнечное тепло, нагревается, но отдавать его в окружающую атмосферу не может — мешает эффект парника, образованный прозрачной крышкой. На практике конструкции солнечных коллекторов несколько отличаются:

  1. Открытые. Самые простые (если не примитивные) приемники, представляющие собой продолговатые лотки из черной пластмассы, наполненные водой. Лотки нагреваются и отдают тепло воде. Которая используется для летнего душа или подогрева воды в бассейне. Этот вид не может похвастаться ни КПД, ни долговечностью, но простота и возможность сделать открытые коллекторы самостоятельно дали определенную популярность
  2. Трубчатые. Приемниками энергии являются вакуумные стеклянные трубки. Они имеют коаксиальную конструкцию (тип «труба в трубе», между ними вакуум для теплоизоляции). Соединяются в распределитель и подключаются к отопительному контуру
  3. Плоские. Больше всего они напоминают вышеупомянутую модель — черный ящик с прозрачной крышкой. На поверхность днища плотно крепится трубка с водой, получающей тепловую энергию от контакта с нагретым материалом

Использовать солнечные коллекторы можно только в определенных условиях. Если стоит мороз, полезный эффект будет практически незаметен. Необходимо, чтобы температура воздуха было довольно высока, что делает использование солнечного обогрева доступным только в достаточно теплых регионах. Коллекторы используются только для обогрева помещений, поэтому их функционал и возможности заметно ниже.

Преимущества солнечных установок

  • Основным преимуществом является неограниченно высокий ресурс источника — Солнца. На самом деле, поток энергии имеет определенные пределы, но на нынешнем этапе развития технологии достичь этого предела совершенно невозможно.
  • Вторым преимуществом является отсутствие стоимости энергии. Она просто есть, и ей можно и нужно пользоваться.
  • Кроме того, появление источника предсказуемо и может быть заранее рассчитано с точностью до секунд, что заметно отличает его от других альтернативных видов энергии.

Проблемы использования солнечной энергии

Применение солнечной энергии имеет и некоторые проблемы. Основными из них являются отсутствие Солнца в ночное время и возможность возникновения облачности, осадков и прочих неблагоприятных погодных условий. Есть и еще важная и существенная проблема — низкая эффективность оборудования, в сочетании с высокой ценой. Эта проблема считается разрешимой, многие ученые и инженеры постоянно работают над ее решением.

Перспективы развития

Энергия Солнца на Земле неиссякаема. Это дает основания прочить постоянное развитие и продвижение технологий получения и переработки солнечной энергии, появление более эффективной аппаратуры, увеличение доли солнечной энергии в общем потреблении человечества. Статистика показывает, что за последние 10 лет в этом направлении сделан гигантский скачок, поэтому будущее у гелиоэнергетики во всех смыслах слова блестящее.

Ссылка на основную публикацию
Инструкция сигнализации tomahawk 434 mhz frequency — thinkbutdithud’s blog
Инструкция по эксплуатации сигнализации Tomahawk (Томагавк) как отключить и настроить Приобретя новый автомобиль, любой владелец, прежде всего, должен позаботиться о...
Инструкция Как Эффективно Бороться с Кротами на Участке
Эффективные ловушки для кротов - советы специалистов Существует ряд ловушек и капканов, которые помогают бороться с кротами, приносящими вред на...
Инструкция Пайка Алюминия в Домашних Условиях
Как паять алюминий оловом; Изобретения и самоделки Как запаять алюминиевые предметы обычным припоем Пайка алюминия стандартным припоем по обычной технологии...
Инструкция Шевроле Лачетти руководство по эксплуатации
Руководство по эксплуатации Шевроле Лачетти Руководство по эксплуатации Шевроле Лачетти — седана и хэтчбека. Шевроле Лачетти: руководство по эксплуатации седана...
Adblock detector