Миф чем выше напряжение аккумулятора, тем мощнее шуруповерт

Уроки Ардуино

Данный раздел имеет довольно таки большую значимость, если делать что то не так, как написано здесь, можно получить сгоревшую плату или глюки, причины которых не так очевидны и отследить их очень трудно.

Перейдем к питанию платы: есть три способа питать Ардуино и вообще Ардуино-проект в целом, у каждого есть свои плюсы/минусы и особенности:

  • Бортовой USB порт
  • “Сырой” вход на микроконтроллер 5V
  • Стабилизированный вход Vin

Что касается земли (пины GND) то они все связаны между собой и просто продублированы на плате, это нужно запомнить. Пины 3.3V, 5V и GND являются источником питания для датчиков и модулей, но давайте рассмотрим особенности.

Питание от USB

Питание от USB – самый плохой способ питания ардуино-проекта. Почему? По линии питания +5V от USB стоит диод, выполняющий защитную функцию: он защищает порт USB компьютера от высокого потребления тока компонентами ардуино-проекта или от короткого замыкания (КЗ), которое может произойти по случайности/криворукости любителей ковырять макетные платы. КЗ продолжительностью менее секунды не успеет сильно навредить диоду и всё может обойтись, но продолжительное замыкание превращает диод в плавкий предохранитель, выпускающий облако синего дыма и спасающий порт компьютера от такой же участи.

Слаботочный диод имеет ещё одну неприятную особенность: на нём падает напряжение, причем чем больше ток потребления схемы, тем сильнее падает напряжение питания. Пример: голая ардуина без всего потребляет около 20 мА, и от 5 Вольт на юсб после диода нам остаётся примерно 4.7 Вольт. Чем это плохо: опорное напряжение при использовании АЦП крайне нестабильно, не знаешь, что измеряешь (да, есть способ измерения опорного напряжения, но делать это нужно вручную). Некоторые железки чувствительны к напряжению питания, например LCD дисплеи: при питании от 5V они яркие и чёткие, при 4.7 вольтах (питание от юсб) они уже заметно теряют яркость. Если подвигать сервоприводом или включить реле – на диоде упадет ещё больше и дисплей практически погаснет. При коротких мощных нагрузках (выше 500-600ма) микроконтроллер перезапустится, так как напряжение упадет ниже плинтуса.

Вы наверное предложите заменить диод перемычкой, чтобы питать схему от USB большим током, например от powerbank’а. Так делать тоже нельзя, потому что дорожки на плате не рассчитаны на большие токи (дорожка 5V очень тонкая и идёт через всю плату). Я думаю, что можно будет снять 1-2 Ампера с пина 5V, но, скорее всего, напряжение просядет. Также при КЗ вы скорее всего попрощаетесь с дорожкой вообще. Питайте силовую часть схемы либо отдельно, либо от того же источника питайте Arduino.

Питание в Vin

Питание в пин VinGND) – более универсальный способ питания ардуино-проекта, этот пин заводит питание на бортовой стабилизатор напряжения ардуино, на китайских платах обычно стоит AMS1117-5.0. Это линейный стабилизатор, что имеет свои плюсы и минусы. Он позволяет питать ардуино и ардуино-проект от напряжения 7-12 Вольт (это рекомендуемый диапазон, так то питать можно от 5 до 20 Вольт). Стабилизатор устроен так, что он выдает хорошее ровное напряжение с минимальными пульсациями, но всё лишнее напряжение превращает в тепло. Если питать плату и один миниатюрный сервопривод от 12 Вольт, то при активной работе привода стабилизатор нагреется до 70 градусов, что уже ощутимо горячо. По некоторым расчетам из даташита можем запомнить некоторые цифры:

  • При напряжении 7 Вольт (таких блоков питания я не встречал) в Vin можно снять с пина 5V до 2A, больше – перегрев. Отлично сработают два литиевых аккумулятора
  • При 12 Вольтах на Vin можно снять с пина 5V не более 500мА без риска перегрева стабилизатора.

Питание в пин Vin возможно только в том случае, если в Ардуино проекте (имеется в виду плата Ардуино и железки, подключенные к 5V и GND) не используются мощные потребители тока, такие как сервоприводы, адресные светодиодные ленты, моторчики и прочее. Что можно: датчики, сенсоры, дисплеи, модули реле (не более 3 одновременно в активном состоянии), одиночные светодиоды, органы управления. Для проектов с мощной 5 Вольтовой нагрузкой для нас есть только третий способ.

Питание в 5V

Питание в пин 5VGND) – самый лучший вариант питать плату и ардуино-проект в целом, но нужно быть аккуратным: пин идёт напрямую на микроконтроллер, и на него действуют некоторые ограничения:

  • Максимальное напряжение питания согласно даташиту на микроконтроллер – 5.5V. Всё что выше – с большой вероятностью выведет МК из строя;
  • Минимальное напряжение зависит от частоты, на которой работает МК. Вот строчка из даташита: 0 – 4 MHz @ 1.8 – 5.5V, 0 – 10 MHz @ 2.7 – 5.5V, 0 – 20 MHz @ 4.5 – 5.5V. Что это значит: большинство Arduino-плат имеют источник тактирования на 16 MHz, то есть Arduino будет стабильно работать от напряжения

4 Вольта (20 МГц – 4.5V, 16 МГц – около 4V). Есть версии Arduino на 8 МГц, они будут спокойно работать от напряжения 2.5V.

Самый популярный вариант – USB зардяник от смартфона, их легко достать, диапазон токов от 500ма до 3А – справится практически с любым проектом. Отрезаем штекер и паяем провода на 5V и GND, предварительно определив, где плюс/минус при помощи мультиметра или по цвету: красный всегда плюс, чёрный – земля, при красном плюсе земля может быть белого цвета. При чёрной земле плюс может быть белым, вот так вот. Точно туда же паяем все датчики/модули/потребители 5 Вольт. Да, не очень удобно это паять, но при известной схеме можно аккуратно собрать всё питание в отдельные скрутки и припаять уже их. Пример на фото ниже. Источником питания там является отдельное гнездо micro-usb, зелёная плата сразу над дисплеем.

Автоматический выбор источника

На платах Arduino (на китайских клонах в том числе) реализовано автоматическое переключение активного источника питания: при подключении внешнего питания на пин Vin линия питания USB блокируется. На схеме это выглядит вот так:

Питание “мощных” схем

Резюмируя и повторяя всё сказанное выше, рассмотрим варианты питания проектов с большим потреблением тока.

Питать мощный проект (светодиоды, двигатели, нагреватели) от 5V можно так: Arduino и потребитель питаются вместе от 5V источника питания:

Питать мощный потребитель от USB через плату нельзя, там стоит диод, да и дорожки питания тонкие:

Что делать, если всё-таки хочется питать проект от USB, например от powerbank’а? Это ведь удобно! Всё очень просто:

Если есть только блок питания на 12V, то у меня плохие новости: встроенный стабилизатор на плате не вытянет больше 500 мА:

Но если мы хотим питать именно 12V нагрузку, то проблем никаких нет: сама плата Arduino потребляет около 20 мА, и спокойно будет работать от бортового стабилизатора:

Автономное питание

Бывает, что нужно обеспечить автономное питание проекта, т.е. вдали от розетки. Давайте рассмотрим варианты:

    Питание в порт USB

      Самый обыкновенный Powerbank, максимальный ток – 500 мА (помним про защитный диод). Напряжение на пине 5V и высокий уровень GPIO в этом случае будет равен

    4.7V (опять же помним про диод). Внимание! У большинства Powerbank’ов питание отключается при нагрузке меньше 200мА, т.е. об энергосбережении можно забыть;

  • Максимальный выходной ток с пина 5V – 500 мА!
  • Питание в пин Vin (или штекер 5.5×2.1 на плате UNO/MEGA)
    • Любой блок питания/зарядник от ноута с напряжением 7-18 Вольт
    • 9V батарейка “Крона” – плохой, но рабочий вариант. Ёмкость кроны очень небольшая;
    • Сборка из трёх литиевых аккумуляторов: напряжение 12.6-9V в процессе разряда. Хороший вариант, также имеется 12V с хорошим запасом по току (3А для обычных, 20А для высокотоковых аккумуляторов) для двигателей или светодиодных лент;
    • “Модельные” аккумуляторы, в основном Li-Po. В целом то же самое, что предыдущий пункт, но запаса по току в разы больше;
    • Энергосбережение – не очень выгодный вариант, т.к. стабилизатор потребляет небольшой, но всё же ток;
    • Максимальный выходной ток с пина 5V: 2А при 7V на Vin, 500ma при 12V на Vin
  • Питание в пин 5V
    • Для стабильных 5V на выходе – литиевый аккумулятор и повышающий до 5V модуль. У таких модулей обычно запас по току 2А, также модуль потребляет “в холостом режиме” – плохое энергосбережение;
    • Литиевый аккумулятор – напряжение на пине 5V и GPIO будет 4.2-3.5V, некоторые модули будут работать, некоторые – нет. Работа МК от напряжения ниже 4V не гарантируется, у меня работало в целом стабильно до 3.5V, ниже уже может повиснуть. Энергосбережение – отличное;
    • Пальчиковые батарейки (ААА или АА) – хороший вариант, 3 штуки дадут 4.5-3V, что граничит с риском зависнуть. 4 штуки – очень хорошо при условии, что батарейки чуть разряжены и суммарное напряжение не превышает 5.5V. новые батарейки дадут 6V, что скорее всего убьёт микроконтроллер;
    • Пальчиковые Ni-Mh аккумуляторы – отличный вариант, смело можно ставить 4 штуки, они обеспечат нужное напряжение на всём цикле разряда (до 4V). Также имеют хороший запас по току, можно даже адресную ленту питать.
    • Платы с кварцем (тактовым генератором) на 8 МГц позволяют питать схему от низкого напряжения (2.5V, как мы обсуждали выше), отлично подойдут те же батарейки/аккумуляторы, также для маломощные проекты можно питать от литиевой таблетки (3.2-2.5V в процессе разряда).
    • Максимальный выходной ток с пина 5V ограничен током источника питания
  • Arduino как источник питания

    Важный момент, который вытекает из предыдущих: использование платы Arduino как источник питания для модулей/датчиков. Варианта тут два:

    • Питание датчиков и модулей от 5V
      • При питании платы от USB – максимальный ток 500 мА
      • При питании платы в Vin – максимальный ток 2 А при Vin 7V, 500 мА при Vin 12V
      • При питании платы в 5V – максимальный ток зависит от блока питания
    • Питание датчиков от GPIO (пинов D и A) – максимальный ток с одного пина: 40 мА, но рекомендуется снимать не более 20 мА. Максимальный суммарный ток с пинов (макс. ток через МК) не должен превышать 200 мА. Допускается объединение нескольких ног для питания нагрузки, но состояние выходов должно быть изменено одновременно (желательно через PORTn), иначе есть риск спалить ногу при её закорачивании на другую во время переключения. Либо делать ногу входом (INPUT), вместо подачи на неё низкого (LOW) сигнала. В этом случае опасность спалить ноги отсутствует.

    Помехи и защита от них

    Если в одной цепи питания с Ардуино стоят мощные потребители, такие как сервоприводы, адресные светодиодные ленты, модули реле и прочее, на линии питания могут возникать помехи, приводящие к сильным шумам измерений с АЦП, а более мощные помехи могут дергать прерывания и даже менять состояния пинов, нарушая связь по различным интерфейсам связи и внося ошибки в показания датчиков, выводя чушь на дисплеи, а иногда дело может доходить до перезагрузки контроллера или его зависания. Некоторые модули также могут зависать, перезагружаться и сбоить при плохом питании, например bluetooth модуль спокойно может зависнуть и висеть до полной перезагрузки системы, а радиомодули rf24 вообще не будут работать при “шумном” питании.

    Более того, помеха может прийти откуда не ждали – по воздуху, например от электродвигателя, индуктивный выброс ловится проводами и делает с системой всякое. Что же делать? “Большие дяди” в реальных промышленных устройствах делают очень много для защиты от помех, этому посвящены целые книги и диссертации. Мы с вами рассмотрим самое простое, что можно сделать дома на коленке.

    • Питать логическую часть (Ардуино, слаботочные датчики и модули) от отдельного малошумящего блока питания 5V, а ещё лучше питаться в пин Vin от блока питания на 7-12V, так как линейный стабилизатор даёт очень хорошее ровное напряжение. Для корректной работы устройств, питающихся отдельно (драйверы моторов, приводы) нужно соединить земли Ардуино и всех внешних устройств;
    • Поставить конденсаторы по питанию платы, максимально близко к пинам 5V и GND: электролит 6.3V 470 uF (мкФ) и керамический на 0.1-1 мкФ. Это сгладит помехи даже от сервоприводов;
    • У “выносных” на проводах элементах системы (кнопки, крутилки, датчики) скручивать провода в косичку, преимущественно с землёй. А ещё лучше использовать экранированные провода, экран естественно будет GND. Таким образом защищаемся от электромагнитных наводок;
    • Соединять все земли одним толстым проводом и по возможности заземлять на центральное заземление;
    • Металлический и заземленный корпус устройства (или просто обернутый фольгой �� ), на который заземлены все компоненты схемы – залог полного отсутствия помех и наводок по воздуху.

    На практике самая подлая помеха обычно приходит при коммутации индуктивной нагрузки при помощи электромагнитного реле: от такой помехи очень сложно защититься, потому что приходит она по земле, то есть вас не спасёт даже раздельное питание проекта. Что делать?

    • Для цепей постоянного тока обязательно ставить мощный диод обратно-параллельно нагрузке, максимально близко к клеммам реле. Диод примет (замкнёт) на себя индуктивный выброс от мотора/катушки;
    • Туда же, на клеммы реле, можно поставить RC цепочку, называемую в этом случае искрогасящей: резистор 39 Ом 0.5 Вт, конденсатор 0.1 мкФ 400V (для цепи 220В);
    • Для сетей переменного тока использовать твердотельное (SSR) реле с детектором нуля (Zero-cross detector), они же называются “бесшумные” реле. Если в цепи переменного тока вместо реле стоит симистор с оптопарой, то оптопару нужно использовать опять же с детектором нуля, такая оптопара, как и SSR zero-cross будут отключать нагрузку в тот момент, когда напряжение в сети переходит через ноль, это максимально уменьшает все выбросы.

    Подробнее об искрогасящих цепях можно почитать вот в этой методичке

    Главный Глупый Вопрос

    У новичков в электронике, которые не знают закон Ома, очень часто возникают вопросы вида: “а каким током можно питать Ардуино“, “какой ток можно подать на Ардуино“, “не сгорит ли моя Ардуина от от блока питания 12V 10A“, “сколько Ампер можно подавать на Arduino” и прочую чушь. Запомните: вы не можете подать Амперы, вы можете подать только Вольты, а устройство возьмёт столько Ампер, сколько ему нужно. В случае с Arduino – голая плата возьмёт 20-22 мА, хоть от пина 5V, хоть от Vin. Ток, который указан на блоке питания, это максимальный ток, который БП может отдать без повреждения/перегрева/просадки напряжения. Беспокоиться стоит не об Arduino, а об остальном железе, которое стоит в схеме и питается от блока питания, а также о самом блоке питания, который может не вывезти вашу нагрузку (мотор, светодиоды, обогреватель). Общий ток потребления компонентов не должен превышать возможностей источника питания, вот в чём дело. А будь блок питания хоть на 200 Ампер – компоненты возьмут ровно столько, сколько им нужно, и у вас останется “запас по току” для подключения других. Если устройство питается напряжением, то запомните про максимальный ток источника питания очень простую мысль: кашу маслом не испортишь.

    Блок питания для шуруповерта 12в своими руками

    Приобретая аккумуляторный шуруповерт, практически никто не задумывается о сроке службы аккумуляторных батарей. В зависимости от производителя и стоимости инструмента, аккумуляторы могут прослужить исправно и 5 лет, и менее года. Особенно это касается инструмента от безымянного производителя из Китая (а таких на рынке подавляющее большинство). Замена аккумуляторных батарей на новые по финансовым затратам сравнима с покупкой нового инструмента, поэтому часто возникает потребность сделать блок питания для шуруповерта 18В или 12В своими руками.

    Требования к источнику питания

    Вне зависимости от того, на какое напряжение рассчитан шуруповерт, к блоку питания предъявляются особые требования: при высокой нагрузке на инструмент, например, при закручивании длинных шурупов в твердую древесину или в режиме сверления ток потребления двигателя может повышаться до десятка ампер. Если в режиме холостого хода потребляемый ток составляет не более 1-2 А и достаточно блока питания с мощностью 30-40 Вт, то для нормальной работы требуется мощность порядка 200 Вт.

    С аккумуляторными батареями все просто. Специфика их работы такова, что они способны на короткое время выдавать большие токи, восстанавливая рабочее напряжение во время простоя. Возникает вопрос: зарядное устройство для любого шуруповёрта имеет малый вес и габариты, почему бы не использовать его в качестве источника напряжения? Ответ – однозначно нет. Зарядное устройство рассчитано на выдачу малого тока в течение длительного времени, нам же требуются большие токи на короткий срок. Поэтому внешний блок питания должен иметь запас по мощности.

    Конструкция блока питания

    Самодельные БП для шуруповертов могут иметь различные варианты схемотехнического и конструктивного исполнения:

    • Встроенные в корпус стандартных аккумуляторов;
    • В виде отдельного блока;
    • Импульсные;
    • Трансформаторные.

    Теперь подробнее о каждом из них.

    Встроенные

    Несомненное преимущество встроенных устройств заключается в том, что из внешних деталей остается только лишь сетевой шнур маленького сечения. Самостоятельно изготовить такой блок питания под силу не всем. Тут требуется немалый опыт, поскольку малогабаритные мощные блоки питания можно сделать только по импульсной схеме. Трансформатор необходимой мощности классической конструкции в рукоять шуруповерта не поместится, а с подходящими габаритами будет иметь мощность в единицы ватт, чего хватит только для холостой работы.

    Отдельный блок

    Ввиду того, что блок питания находится вне корпуса шуруповерта, к нему не предъявляются ограничения по габаритам и массе, поэтому он может быть выполнен с желаемым запасом по мощности. Единственное ограничение – длина и площадь поперечного сечения соединительных шнуров между инструментом и источником питания, ведь, согласно закона Ома, при снижении напряжения при одинаковой мощности потребления растет ток, поэтому низковольтный шнур питания должен иметь большее сечение, чем сетевой на 220 В. К этому добавляется также требование по минимизации падения напряжения на проводах. Толстый шнур имеет повышенную массу и жесткость, что уменьшает удобство пользования инструментом.

    Импульсные источники

    Импульсные источники питания характеризуются тем, что понижающий трансформатор в них работает на повышенной частоте, в результате чего имеет минимальные габариты при той же мощности. Общие габариты устройства вполне позволяют разместить конструкцию в стандартном корпусе вместо неисправных аккумуляторов. Из минусов – сложность конструкции для самостоятельного повторения.

    Трансформаторные устройства

    Блоки питания на трансформаторах еще не потеряли своей актуальности ввиду простоты изготовления и надежности. Единственный минус таких изделий – большие габариты и масса, но это не существенно, когда устройство выполнено в виде отдельного блока и установлено стационарно.

    Устройства на трансформаторах получили преимущественное распространение среди самодельных устройств, поэтому будут рассмотрены самым подробным образом.

    Конструкция трансформаторного блока питания

    Данное устройство характеризуется наличием следующих составных частей:

    • Силовой трансформатор;
    • Выпрямитель:
    • Фильтр питания;
    • Стабилизатор напряжения.

    Силовой трансформатор представляет собой самую габаритную и тяжелую часть устройства. Он предназначен для преобразования высокого входного напряжения в низкое, соответствующее требованиям подключаемой нагрузки.

    Задача выпрямителя состоит в преобразовании переменного напряжения в постоянное. Наибольшей эффективностью обладают мостовые схемы выпрямления, состоящие из четырех диодов или монолитного выпрямительного моста.

    Фильтр сглаживает пульсации напряжения после выпрямительного моста.

    Теоретически этих элементов достаточно для работы шуруповерта, но скачки напряжения в питающей сети, его просадки из-за увеличения нагрузки могут привести к нестабильной работе двигателя, а увеличение сверх нормы – к выходу из строя.

    Задача стабилизатора состоит в поддержании стабильного напряжения на выходе, вне зависимости от величины нагрузки и уровня напряжения питающей сети.

    Для самостоятельной сборки можно порекомендовать простую проверенную схему стабилизатора, которая отличается минимумом деталей и доступна для повторения любому, кто умеет держать в руках паяльник и пользоваться измерительными приборами.

    В приведенной схеме можно увеличить емкость конденсатора до 1000-2000 мкФ, а транзисторы использовать типов КТ807, КТ819 с любой буквой.

    Основная проблема состоит в подборе трансформатора с необходимым уровнем выходного напряжения. Оно должно быть несколько больше того, что требуется для инструмента, поскольку часть будет оставаться на элементах стабилизатора. Для нормальной работы стабилизатора требуется, чтобы выпрямленное напряжение превышало стабилизированное на несколько вольт. Слишком много нельзя, поскольку его излишек будет падать на ключевом транзисторе, нагревая его, а низкое значение в ряде случаев приведет к снижению выходного напряжения.

    Обратите внимание! После мостового выпрямителя и фильтра значение постоянного напряжение будет превышать входное переменное примерно в 1.4 раза.

    Таким образом, блок питания для шуруповерта на 12В требует трансформатор с выходным напряжением 12-14 В переменного тока.

    Важно! Транзистор обязательно должен крепиться на радиатор охлаждения.

    Использование блока питания компьютера

    Собрать блок питания для шуруповерта с двигателем 12В своими руками рационально из блока питания от компьютера. Стандартные напряжения материнской платы и внешних устройств компьютера составляют:

    • + 3.3 В;
    • + 5 В;
    • + 12 В;
    • – 12 В.

    Стандартные БП способны выдавать в цепи +12 В ток до 10-15 А, что абсолютно приемлемо для большинства моделей шуруповертов. На разъемах питания необходимое напряжение присутствует на черном (масса) и желтом проводах. Остальные провода не нужны, и их желательно отпаять прямо на плате блока питания, чтобы они не мешались и не создавали повода для замыкания.

    В некоторых случаях, возможно, использовать компьютерный блок питания для шуруповерта 14 В. Правда будет наблюдаться небольшое падение мощности. А вот шуруповерты на 16 и 18 Вольт с такими устройствами работать не будут. При наличии квалификации можно внести в схему стандартного блока питания изменения с целью повышения напряжения, но рядовому пользователю такое обычно не под силу.

    Обратите внимание! Все сказанное относится к устаревшим, но еще встречающимся блокам питания АТ. Более современные ATX требуют некоторых переделок для возможности включения, поскольку оно организовано на материнской плате компьютера специальной схемой.

    При должной аккуратности это можно сделать самостоятельно. Для этого на самом большом разъеме устройства нужно найти провод зеленого цвета. Замыкая его через кнопку на черный провод массы, можно включить блок питания.

    Используя любой источник, не требуется вносить каких-либо изменений в конструкцию инструмента. Для подачи напряжения следует воспользоваться корпусом от неисправных аккумуляторов, просверлив в нем отверстия для питающих проводов. Сами проводники нужно аккуратно, не расплавив пластик, припаять к выходным клеммам, строго соблюдая полярность.

    Собранную конструкцию требуется поместить в подходящий корпус и, при необходимости, снабдить ручкой для переноски.

    Бестрансформаторные устройства

    В интернете можно встретить рекомендации по переделке пускорегулирующих устройств мощных люминесцентных ламп (экономок) для использования в качестве блока питания шуруповерта. Но мало где говорится, что такие конструкции имеют гальваническую связь с сетью переменного тока и пользоваться ими небезопасно. Не следует повторять подобные конструкции и подвергаться риску удара электрическим током.

    Конструирование внешнего источника может послужить временной мерой в качестве замены аккумуляторов, поскольку именно мобильность и независимость от сети являются основным преимуществом аккумуляторных устройств. Неудобно, когда шнур питания путается и мешает работать, особенно в труднодоступных местах.

    Видео

    Можно ли восстановить аккумулятор шуруповерта? 4 метода

    Восстановить аккумулятор шуруповёрта можно своими силами. Вы сэкономите до 30% от общей стоимости вашего инструмента, если проследуете этой инструкции.

    Руководство поможет восстановить автономность любых моделей шуруповёртов (18 вольт, Макита 12 вольт, Макита 14.4, Метабо, Хитачи, iMax B6 и так далее) с батареями типа Ni-Cd (NiCd), Ni-MH и Li-Ion. Следует внимательно отнестись к рекомендациям и уточнениям относительно разных конструкций электроинструмента.

    Что нужно знать, прежде чем начать восстановление аккумулятора шуруповёрта?

    1. Большинство элементов питания в электроинструменте имеет одинаковые конструктивные особенности (последовательное соединение компактных ячеек).
    2. Необходимо обращать внимание на тип АКБ (Ni-Cd, Ni-MH и Li-Ion) и ёмкость (в мАч).
    3. При разборке блока аккумуляторов нужно отслеживать полярность (+/-) соединений.
    4. От перегрева «банки» защищены термистором с припаянным резистором.
    5. Восстановить элемент питания типа Li-Ion невозможно (как определить его исправность, смотрите ниже).

    Определяем неисправность аккумулятора шуруповёрта

    1. Зарядите АКБ до полного уровня, снимите с зарядки и разберите для доступа к ячейкам.
    2. С помощью мультиметра измеряем напряжение (в режиме DCV) каждой ячейки (батареи).
    3. В исправном состоянии Ni-Cd и Ni-MH выдают 1.2-1.4 В, а Li-Ion — 3.6-3.8 В.
    4. Соберите АКБ и разрядите её до явного замедления вращения шуруповёрта.
    5. Вновь разберите и выполните замер — снижение напряжения до уровня 0.4-0.8 В говорит об износе такой ячейки.

    Как восстановить аккумулятор шуруповёрта?

    1. Полная замена АКБ на новый

    Лучше всего выполнить замену аккумулятора — так вы получите большой запас ёмкости для продолжительной службы электроинструмента. В магазине вы найдёте полный набор АКБ для моделей от всевозможных производителей.

    2. Частичная замена изношенных ячеек

    Заменить каждую ячейку по отдельности будет экономически целесообразнее при наличии свободного времени. Здесь вам потребуется навык точечной сварки — спайка ячеек обычным паяльником может изменить их характеристики и испортить!

    3. Устранение «эффекта памяти»

    Если после полной зарядки шуруповёрт быстро расходует заряд аккумулятора и спустя время продолжает понемногу работать, то вы столкнулись с «эффектом памяти» Ni-Cd или Ni-MH.

    Устранить «эффект памяти» в шуруповёрте поможет его калибровка (тренировка):
    • зарядите до 100% (по возможности низким током);
    • полностью разрядите инструмент подачей на вращение малой мощности длительное время;
    • повторите 3-5 раз такую процедуру, и аккумулятор вернётся к жизни.

    4. Экзотиеческий метод для профи

    Аккумуляторы для шуруповёрта изнашиваются из-за потери вещества электролита — он просто выкипает при активном использовании электроинструментом. Разрезав пластины соединения и проделав отверстие в ячейке, можно долить химический состав. После герметизации корпуса АКБ вновь готов к работе.

    Если вы знаете ещё способы, то напишите их в комментарии или отправьте сообщение нам ВКонтакте @NeovoltRu.

    Подпишитесь в группе на новости из мира гаджетов, узнайте об улучшении их автономности и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.

    Читайте также:  Какая разболтовка колес на лада приора; Все о Лада Гранта
    Ссылка на основную публикацию
    Мини ТЭЦ для дома на твердом и биотопливе мощность, стоимость
    Домашняя ТЭЦ на микротурбине; DIY Сделай сам Идеальный источник тепла и электроэнергии для дома В наших климатических условиях дом должен...
    Методика снятия, ремонта и замены замка капота ВАЗ 2107
    Как открыть капот ВАЗ 2107 регулировка замка, замена тросика, установка воздухозаборника, инструкции Капот является неотъемлемой частью любого автомобиля. На ВАЗ...
    Методы диагностики и обследования Болезни артерий Сосудистый центр им
    Методы диагностики и лечения; Новокузнецкий филиал государственного бюджетного учреждения здравоохра Методы лечения: Подбор терапии пациентам с хронической сердечной недостаточностью при...
    Мини-бар своими руками пошаговые инструкции
    Как сделать автомойку своими руками, советы, рекомендации У автовладельцев, которые имеют собственный небольшой участок земли или гараж, оборудованный канализацией, есть...

    Миф чем выше напряжение аккумулятора, тем мощнее шуруповерт

    Уроки Ардуино

    Данный раздел имеет довольно таки большую значимость, если делать что то не так, как написано здесь, можно получить сгоревшую плату или глюки, причины которых не так очевидны и отследить их очень трудно.

    Перейдем к питанию платы: есть три способа питать Ардуино и вообще Ардуино-проект в целом, у каждого есть свои плюсы/минусы и особенности:

    • Бортовой USB порт
    • “Сырой” вход на микроконтроллер 5V
    • Стабилизированный вход Vin

    Что касается земли (пины GND) то они все связаны между собой и просто продублированы на плате, это нужно запомнить. Пины 3.3V, 5V и GND являются источником питания для датчиков и модулей, но давайте рассмотрим особенности.

    Питание от USB

    Питание от USB – самый плохой способ питания ардуино-проекта. Почему? По линии питания +5V от USB стоит диод, выполняющий защитную функцию: он защищает порт USB компьютера от высокого потребления тока компонентами ардуино-проекта или от короткого замыкания (КЗ), которое может произойти по случайности/криворукости любителей ковырять макетные платы. КЗ продолжительностью менее секунды не успеет сильно навредить диоду и всё может обойтись, но продолжительное замыкание превращает диод в плавкий предохранитель, выпускающий облако синего дыма и спасающий порт компьютера от такой же участи.

    Слаботочный диод имеет ещё одну неприятную особенность: на нём падает напряжение, причем чем больше ток потребления схемы, тем сильнее падает напряжение питания. Пример: голая ардуина без всего потребляет около 20 мА, и от 5 Вольт на юсб после диода нам остаётся примерно 4.7 Вольт. Чем это плохо: опорное напряжение при использовании АЦП крайне нестабильно, не знаешь, что измеряешь (да, есть способ измерения опорного напряжения, но делать это нужно вручную). Некоторые железки чувствительны к напряжению питания, например LCD дисплеи: при питании от 5V они яркие и чёткие, при 4.7 вольтах (питание от юсб) они уже заметно теряют яркость. Если подвигать сервоприводом или включить реле – на диоде упадет ещё больше и дисплей практически погаснет. При коротких мощных нагрузках (выше 500-600ма) микроконтроллер перезапустится, так как напряжение упадет ниже плинтуса.

    Вы наверное предложите заменить диод перемычкой, чтобы питать схему от USB большим током, например от powerbank’а. Так делать тоже нельзя, потому что дорожки на плате не рассчитаны на большие токи (дорожка 5V очень тонкая и идёт через всю плату). Я думаю, что можно будет снять 1-2 Ампера с пина 5V, но, скорее всего, напряжение просядет. Также при КЗ вы скорее всего попрощаетесь с дорожкой вообще. Питайте силовую часть схемы либо отдельно, либо от того же источника питайте Arduino.

    Питание в Vin

    Питание в пин VinGND) – более универсальный способ питания ардуино-проекта, этот пин заводит питание на бортовой стабилизатор напряжения ардуино, на китайских платах обычно стоит AMS1117-5.0. Это линейный стабилизатор, что имеет свои плюсы и минусы. Он позволяет питать ардуино и ардуино-проект от напряжения 7-12 Вольт (это рекомендуемый диапазон, так то питать можно от 5 до 20 Вольт). Стабилизатор устроен так, что он выдает хорошее ровное напряжение с минимальными пульсациями, но всё лишнее напряжение превращает в тепло. Если питать плату и один миниатюрный сервопривод от 12 Вольт, то при активной работе привода стабилизатор нагреется до 70 градусов, что уже ощутимо горячо. По некоторым расчетам из даташита можем запомнить некоторые цифры:

    • При напряжении 7 Вольт (таких блоков питания я не встречал) в Vin можно снять с пина 5V до 2A, больше – перегрев. Отлично сработают два литиевых аккумулятора
    • При 12 Вольтах на Vin можно снять с пина 5V не более 500мА без риска перегрева стабилизатора.

    Питание в пин Vin возможно только в том случае, если в Ардуино проекте (имеется в виду плата Ардуино и железки, подключенные к 5V и GND) не используются мощные потребители тока, такие как сервоприводы, адресные светодиодные ленты, моторчики и прочее. Что можно: датчики, сенсоры, дисплеи, модули реле (не более 3 одновременно в активном состоянии), одиночные светодиоды, органы управления. Для проектов с мощной 5 Вольтовой нагрузкой для нас есть только третий способ.

    Питание в 5V

    Питание в пин 5VGND) – самый лучший вариант питать плату и ардуино-проект в целом, но нужно быть аккуратным: пин идёт напрямую на микроконтроллер, и на него действуют некоторые ограничения:

    • Максимальное напряжение питания согласно даташиту на микроконтроллер – 5.5V. Всё что выше – с большой вероятностью выведет МК из строя;
    • Минимальное напряжение зависит от частоты, на которой работает МК. Вот строчка из даташита: 0 – 4 MHz @ 1.8 – 5.5V, 0 – 10 MHz @ 2.7 – 5.5V, 0 – 20 MHz @ 4.5 – 5.5V. Что это значит: большинство Arduino-плат имеют источник тактирования на 16 MHz, то есть Arduino будет стабильно работать от напряжения

    4 Вольта (20 МГц – 4.5V, 16 МГц – около 4V). Есть версии Arduino на 8 МГц, они будут спокойно работать от напряжения 2.5V.

    Самый популярный вариант – USB зардяник от смартфона, их легко достать, диапазон токов от 500ма до 3А – справится практически с любым проектом. Отрезаем штекер и паяем провода на 5V и GND, предварительно определив, где плюс/минус при помощи мультиметра или по цвету: красный всегда плюс, чёрный – земля, при красном плюсе земля может быть белого цвета. При чёрной земле плюс может быть белым, вот так вот. Точно туда же паяем все датчики/модули/потребители 5 Вольт. Да, не очень удобно это паять, но при известной схеме можно аккуратно собрать всё питание в отдельные скрутки и припаять уже их. Пример на фото ниже. Источником питания там является отдельное гнездо micro-usb, зелёная плата сразу над дисплеем.

    Автоматический выбор источника

    На платах Arduino (на китайских клонах в том числе) реализовано автоматическое переключение активного источника питания: при подключении внешнего питания на пин Vin линия питания USB блокируется. На схеме это выглядит вот так:

    Питание “мощных” схем

    Резюмируя и повторяя всё сказанное выше, рассмотрим варианты питания проектов с большим потреблением тока.

    Питать мощный проект (светодиоды, двигатели, нагреватели) от 5V можно так: Arduino и потребитель питаются вместе от 5V источника питания:

    Питать мощный потребитель от USB через плату нельзя, там стоит диод, да и дорожки питания тонкие:

    Что делать, если всё-таки хочется питать проект от USB, например от powerbank’а? Это ведь удобно! Всё очень просто:

    Если есть только блок питания на 12V, то у меня плохие новости: встроенный стабилизатор на плате не вытянет больше 500 мА:

    Но если мы хотим питать именно 12V нагрузку, то проблем никаких нет: сама плата Arduino потребляет около 20 мА, и спокойно будет работать от бортового стабилизатора:

    Автономное питание

    Бывает, что нужно обеспечить автономное питание проекта, т.е. вдали от розетки. Давайте рассмотрим варианты:

      Питание в порт USB

        Самый обыкновенный Powerbank, максимальный ток – 500 мА (помним про защитный диод). Напряжение на пине 5V и высокий уровень GPIO в этом случае будет равен

      4.7V (опять же помним про диод). Внимание! У большинства Powerbank’ов питание отключается при нагрузке меньше 200мА, т.е. об энергосбережении можно забыть;

    • Максимальный выходной ток с пина 5V – 500 мА!
  • Питание в пин Vin (или штекер 5.5×2.1 на плате UNO/MEGA)
    • Любой блок питания/зарядник от ноута с напряжением 7-18 Вольт
    • 9V батарейка “Крона” – плохой, но рабочий вариант. Ёмкость кроны очень небольшая;
    • Сборка из трёх литиевых аккумуляторов: напряжение 12.6-9V в процессе разряда. Хороший вариант, также имеется 12V с хорошим запасом по току (3А для обычных, 20А для высокотоковых аккумуляторов) для двигателей или светодиодных лент;
    • “Модельные” аккумуляторы, в основном Li-Po. В целом то же самое, что предыдущий пункт, но запаса по току в разы больше;
    • Энергосбережение – не очень выгодный вариант, т.к. стабилизатор потребляет небольшой, но всё же ток;
    • Максимальный выходной ток с пина 5V: 2А при 7V на Vin, 500ma при 12V на Vin
  • Питание в пин 5V
    • Для стабильных 5V на выходе – литиевый аккумулятор и повышающий до 5V модуль. У таких модулей обычно запас по току 2А, также модуль потребляет “в холостом режиме” – плохое энергосбережение;
    • Литиевый аккумулятор – напряжение на пине 5V и GPIO будет 4.2-3.5V, некоторые модули будут работать, некоторые – нет. Работа МК от напряжения ниже 4V не гарантируется, у меня работало в целом стабильно до 3.5V, ниже уже может повиснуть. Энергосбережение – отличное;
    • Пальчиковые батарейки (ААА или АА) – хороший вариант, 3 штуки дадут 4.5-3V, что граничит с риском зависнуть. 4 штуки – очень хорошо при условии, что батарейки чуть разряжены и суммарное напряжение не превышает 5.5V. новые батарейки дадут 6V, что скорее всего убьёт микроконтроллер;
    • Пальчиковые Ni-Mh аккумуляторы – отличный вариант, смело можно ставить 4 штуки, они обеспечат нужное напряжение на всём цикле разряда (до 4V). Также имеют хороший запас по току, можно даже адресную ленту питать.
    • Платы с кварцем (тактовым генератором) на 8 МГц позволяют питать схему от низкого напряжения (2.5V, как мы обсуждали выше), отлично подойдут те же батарейки/аккумуляторы, также для маломощные проекты можно питать от литиевой таблетки (3.2-2.5V в процессе разряда).
    • Максимальный выходной ток с пина 5V ограничен током источника питания
  • Arduino как источник питания

    Важный момент, который вытекает из предыдущих: использование платы Arduino как источник питания для модулей/датчиков. Варианта тут два:

    • Питание датчиков и модулей от 5V
      • При питании платы от USB – максимальный ток 500 мА
      • При питании платы в Vin – максимальный ток 2 А при Vin 7V, 500 мА при Vin 12V
      • При питании платы в 5V – максимальный ток зависит от блока питания
    • Питание датчиков от GPIO (пинов D и A) – максимальный ток с одного пина: 40 мА, но рекомендуется снимать не более 20 мА. Максимальный суммарный ток с пинов (макс. ток через МК) не должен превышать 200 мА. Допускается объединение нескольких ног для питания нагрузки, но состояние выходов должно быть изменено одновременно (желательно через PORTn), иначе есть риск спалить ногу при её закорачивании на другую во время переключения. Либо делать ногу входом (INPUT), вместо подачи на неё низкого (LOW) сигнала. В этом случае опасность спалить ноги отсутствует.

    Помехи и защита от них

    Если в одной цепи питания с Ардуино стоят мощные потребители, такие как сервоприводы, адресные светодиодные ленты, модули реле и прочее, на линии питания могут возникать помехи, приводящие к сильным шумам измерений с АЦП, а более мощные помехи могут дергать прерывания и даже менять состояния пинов, нарушая связь по различным интерфейсам связи и внося ошибки в показания датчиков, выводя чушь на дисплеи, а иногда дело может доходить до перезагрузки контроллера или его зависания. Некоторые модули также могут зависать, перезагружаться и сбоить при плохом питании, например bluetooth модуль спокойно может зависнуть и висеть до полной перезагрузки системы, а радиомодули rf24 вообще не будут работать при “шумном” питании.

    Более того, помеха может прийти откуда не ждали – по воздуху, например от электродвигателя, индуктивный выброс ловится проводами и делает с системой всякое. Что же делать? “Большие дяди” в реальных промышленных устройствах делают очень много для защиты от помех, этому посвящены целые книги и диссертации. Мы с вами рассмотрим самое простое, что можно сделать дома на коленке.

    • Питать логическую часть (Ардуино, слаботочные датчики и модули) от отдельного малошумящего блока питания 5V, а ещё лучше питаться в пин Vin от блока питания на 7-12V, так как линейный стабилизатор даёт очень хорошее ровное напряжение. Для корректной работы устройств, питающихся отдельно (драйверы моторов, приводы) нужно соединить земли Ардуино и всех внешних устройств;
    • Поставить конденсаторы по питанию платы, максимально близко к пинам 5V и GND: электролит 6.3V 470 uF (мкФ) и керамический на 0.1-1 мкФ. Это сгладит помехи даже от сервоприводов;
    • У “выносных” на проводах элементах системы (кнопки, крутилки, датчики) скручивать провода в косичку, преимущественно с землёй. А ещё лучше использовать экранированные провода, экран естественно будет GND. Таким образом защищаемся от электромагнитных наводок;
    • Соединять все земли одним толстым проводом и по возможности заземлять на центральное заземление;
    • Металлический и заземленный корпус устройства (или просто обернутый фольгой �� ), на который заземлены все компоненты схемы – залог полного отсутствия помех и наводок по воздуху.

    На практике самая подлая помеха обычно приходит при коммутации индуктивной нагрузки при помощи электромагнитного реле: от такой помехи очень сложно защититься, потому что приходит она по земле, то есть вас не спасёт даже раздельное питание проекта. Что делать?

    • Для цепей постоянного тока обязательно ставить мощный диод обратно-параллельно нагрузке, максимально близко к клеммам реле. Диод примет (замкнёт) на себя индуктивный выброс от мотора/катушки;
    • Туда же, на клеммы реле, можно поставить RC цепочку, называемую в этом случае искрогасящей: резистор 39 Ом 0.5 Вт, конденсатор 0.1 мкФ 400V (для цепи 220В);
    • Для сетей переменного тока использовать твердотельное (SSR) реле с детектором нуля (Zero-cross detector), они же называются “бесшумные” реле. Если в цепи переменного тока вместо реле стоит симистор с оптопарой, то оптопару нужно использовать опять же с детектором нуля, такая оптопара, как и SSR zero-cross будут отключать нагрузку в тот момент, когда напряжение в сети переходит через ноль, это максимально уменьшает все выбросы.

    Подробнее об искрогасящих цепях можно почитать вот в этой методичке

    Главный Глупый Вопрос

    У новичков в электронике, которые не знают закон Ома, очень часто возникают вопросы вида: “а каким током можно питать Ардуино“, “какой ток можно подать на Ардуино“, “не сгорит ли моя Ардуина от от блока питания 12V 10A“, “сколько Ампер можно подавать на Arduino” и прочую чушь. Запомните: вы не можете подать Амперы, вы можете подать только Вольты, а устройство возьмёт столько Ампер, сколько ему нужно. В случае с Arduino – голая плата возьмёт 20-22 мА, хоть от пина 5V, хоть от Vin. Ток, который указан на блоке питания, это максимальный ток, который БП может отдать без повреждения/перегрева/просадки напряжения. Беспокоиться стоит не об Arduino, а об остальном железе, которое стоит в схеме и питается от блока питания, а также о самом блоке питания, который может не вывезти вашу нагрузку (мотор, светодиоды, обогреватель). Общий ток потребления компонентов не должен превышать возможностей источника питания, вот в чём дело. А будь блок питания хоть на 200 Ампер – компоненты возьмут ровно столько, сколько им нужно, и у вас останется “запас по току” для подключения других. Если устройство питается напряжением, то запомните про максимальный ток источника питания очень простую мысль: кашу маслом не испортишь.

    Блок питания для шуруповерта 12в своими руками

    Приобретая аккумуляторный шуруповерт, практически никто не задумывается о сроке службы аккумуляторных батарей. В зависимости от производителя и стоимости инструмента, аккумуляторы могут прослужить исправно и 5 лет, и менее года. Особенно это касается инструмента от безымянного производителя из Китая (а таких на рынке подавляющее большинство). Замена аккумуляторных батарей на новые по финансовым затратам сравнима с покупкой нового инструмента, поэтому часто возникает потребность сделать блок питания для шуруповерта 18В или 12В своими руками.

    Требования к источнику питания

    Вне зависимости от того, на какое напряжение рассчитан шуруповерт, к блоку питания предъявляются особые требования: при высокой нагрузке на инструмент, например, при закручивании длинных шурупов в твердую древесину или в режиме сверления ток потребления двигателя может повышаться до десятка ампер. Если в режиме холостого хода потребляемый ток составляет не более 1-2 А и достаточно блока питания с мощностью 30-40 Вт, то для нормальной работы требуется мощность порядка 200 Вт.

    С аккумуляторными батареями все просто. Специфика их работы такова, что они способны на короткое время выдавать большие токи, восстанавливая рабочее напряжение во время простоя. Возникает вопрос: зарядное устройство для любого шуруповёрта имеет малый вес и габариты, почему бы не использовать его в качестве источника напряжения? Ответ – однозначно нет. Зарядное устройство рассчитано на выдачу малого тока в течение длительного времени, нам же требуются большие токи на короткий срок. Поэтому внешний блок питания должен иметь запас по мощности.

    Конструкция блока питания

    Самодельные БП для шуруповертов могут иметь различные варианты схемотехнического и конструктивного исполнения:

    • Встроенные в корпус стандартных аккумуляторов;
    • В виде отдельного блока;
    • Импульсные;
    • Трансформаторные.

    Теперь подробнее о каждом из них.

    Встроенные

    Несомненное преимущество встроенных устройств заключается в том, что из внешних деталей остается только лишь сетевой шнур маленького сечения. Самостоятельно изготовить такой блок питания под силу не всем. Тут требуется немалый опыт, поскольку малогабаритные мощные блоки питания можно сделать только по импульсной схеме. Трансформатор необходимой мощности классической конструкции в рукоять шуруповерта не поместится, а с подходящими габаритами будет иметь мощность в единицы ватт, чего хватит только для холостой работы.

    Отдельный блок

    Ввиду того, что блок питания находится вне корпуса шуруповерта, к нему не предъявляются ограничения по габаритам и массе, поэтому он может быть выполнен с желаемым запасом по мощности. Единственное ограничение – длина и площадь поперечного сечения соединительных шнуров между инструментом и источником питания, ведь, согласно закона Ома, при снижении напряжения при одинаковой мощности потребления растет ток, поэтому низковольтный шнур питания должен иметь большее сечение, чем сетевой на 220 В. К этому добавляется также требование по минимизации падения напряжения на проводах. Толстый шнур имеет повышенную массу и жесткость, что уменьшает удобство пользования инструментом.

    Импульсные источники

    Импульсные источники питания характеризуются тем, что понижающий трансформатор в них работает на повышенной частоте, в результате чего имеет минимальные габариты при той же мощности. Общие габариты устройства вполне позволяют разместить конструкцию в стандартном корпусе вместо неисправных аккумуляторов. Из минусов – сложность конструкции для самостоятельного повторения.

    Трансформаторные устройства

    Блоки питания на трансформаторах еще не потеряли своей актуальности ввиду простоты изготовления и надежности. Единственный минус таких изделий – большие габариты и масса, но это не существенно, когда устройство выполнено в виде отдельного блока и установлено стационарно.

    Устройства на трансформаторах получили преимущественное распространение среди самодельных устройств, поэтому будут рассмотрены самым подробным образом.

    Конструкция трансформаторного блока питания

    Данное устройство характеризуется наличием следующих составных частей:

    • Силовой трансформатор;
    • Выпрямитель:
    • Фильтр питания;
    • Стабилизатор напряжения.

    Силовой трансформатор представляет собой самую габаритную и тяжелую часть устройства. Он предназначен для преобразования высокого входного напряжения в низкое, соответствующее требованиям подключаемой нагрузки.

    Задача выпрямителя состоит в преобразовании переменного напряжения в постоянное. Наибольшей эффективностью обладают мостовые схемы выпрямления, состоящие из четырех диодов или монолитного выпрямительного моста.

    Фильтр сглаживает пульсации напряжения после выпрямительного моста.

    Теоретически этих элементов достаточно для работы шуруповерта, но скачки напряжения в питающей сети, его просадки из-за увеличения нагрузки могут привести к нестабильной работе двигателя, а увеличение сверх нормы – к выходу из строя.

    Задача стабилизатора состоит в поддержании стабильного напряжения на выходе, вне зависимости от величины нагрузки и уровня напряжения питающей сети.

    Для самостоятельной сборки можно порекомендовать простую проверенную схему стабилизатора, которая отличается минимумом деталей и доступна для повторения любому, кто умеет держать в руках паяльник и пользоваться измерительными приборами.

    В приведенной схеме можно увеличить емкость конденсатора до 1000-2000 мкФ, а транзисторы использовать типов КТ807, КТ819 с любой буквой.

    Основная проблема состоит в подборе трансформатора с необходимым уровнем выходного напряжения. Оно должно быть несколько больше того, что требуется для инструмента, поскольку часть будет оставаться на элементах стабилизатора. Для нормальной работы стабилизатора требуется, чтобы выпрямленное напряжение превышало стабилизированное на несколько вольт. Слишком много нельзя, поскольку его излишек будет падать на ключевом транзисторе, нагревая его, а низкое значение в ряде случаев приведет к снижению выходного напряжения.

    Обратите внимание! После мостового выпрямителя и фильтра значение постоянного напряжение будет превышать входное переменное примерно в 1.4 раза.

    Таким образом, блок питания для шуруповерта на 12В требует трансформатор с выходным напряжением 12-14 В переменного тока.

    Важно! Транзистор обязательно должен крепиться на радиатор охлаждения.

    Использование блока питания компьютера

    Собрать блок питания для шуруповерта с двигателем 12В своими руками рационально из блока питания от компьютера. Стандартные напряжения материнской платы и внешних устройств компьютера составляют:

    • + 3.3 В;
    • + 5 В;
    • + 12 В;
    • – 12 В.

    Стандартные БП способны выдавать в цепи +12 В ток до 10-15 А, что абсолютно приемлемо для большинства моделей шуруповертов. На разъемах питания необходимое напряжение присутствует на черном (масса) и желтом проводах. Остальные провода не нужны, и их желательно отпаять прямо на плате блока питания, чтобы они не мешались и не создавали повода для замыкания.

    В некоторых случаях, возможно, использовать компьютерный блок питания для шуруповерта 14 В. Правда будет наблюдаться небольшое падение мощности. А вот шуруповерты на 16 и 18 Вольт с такими устройствами работать не будут. При наличии квалификации можно внести в схему стандартного блока питания изменения с целью повышения напряжения, но рядовому пользователю такое обычно не под силу.

    Обратите внимание! Все сказанное относится к устаревшим, но еще встречающимся блокам питания АТ. Более современные ATX требуют некоторых переделок для возможности включения, поскольку оно организовано на материнской плате компьютера специальной схемой.

    При должной аккуратности это можно сделать самостоятельно. Для этого на самом большом разъеме устройства нужно найти провод зеленого цвета. Замыкая его через кнопку на черный провод массы, можно включить блок питания.

    Используя любой источник, не требуется вносить каких-либо изменений в конструкцию инструмента. Для подачи напряжения следует воспользоваться корпусом от неисправных аккумуляторов, просверлив в нем отверстия для питающих проводов. Сами проводники нужно аккуратно, не расплавив пластик, припаять к выходным клеммам, строго соблюдая полярность.

    Собранную конструкцию требуется поместить в подходящий корпус и, при необходимости, снабдить ручкой для переноски.

    Бестрансформаторные устройства

    В интернете можно встретить рекомендации по переделке пускорегулирующих устройств мощных люминесцентных ламп (экономок) для использования в качестве блока питания шуруповерта. Но мало где говорится, что такие конструкции имеют гальваническую связь с сетью переменного тока и пользоваться ими небезопасно. Не следует повторять подобные конструкции и подвергаться риску удара электрическим током.

    Конструирование внешнего источника может послужить временной мерой в качестве замены аккумуляторов, поскольку именно мобильность и независимость от сети являются основным преимуществом аккумуляторных устройств. Неудобно, когда шнур питания путается и мешает работать, особенно в труднодоступных местах.

    Видео

    Можно ли восстановить аккумулятор шуруповерта? 4 метода

    Восстановить аккумулятор шуруповёрта можно своими силами. Вы сэкономите до 30% от общей стоимости вашего инструмента, если проследуете этой инструкции.

    Руководство поможет восстановить автономность любых моделей шуруповёртов (18 вольт, Макита 12 вольт, Макита 14.4, Метабо, Хитачи, iMax B6 и так далее) с батареями типа Ni-Cd (NiCd), Ni-MH и Li-Ion. Следует внимательно отнестись к рекомендациям и уточнениям относительно разных конструкций электроинструмента.

    Что нужно знать, прежде чем начать восстановление аккумулятора шуруповёрта?

    1. Большинство элементов питания в электроинструменте имеет одинаковые конструктивные особенности (последовательное соединение компактных ячеек).
    2. Необходимо обращать внимание на тип АКБ (Ni-Cd, Ni-MH и Li-Ion) и ёмкость (в мАч).
    3. При разборке блока аккумуляторов нужно отслеживать полярность (+/-) соединений.
    4. От перегрева «банки» защищены термистором с припаянным резистором.
    5. Восстановить элемент питания типа Li-Ion невозможно (как определить его исправность, смотрите ниже).

    Определяем неисправность аккумулятора шуруповёрта

    1. Зарядите АКБ до полного уровня, снимите с зарядки и разберите для доступа к ячейкам.
    2. С помощью мультиметра измеряем напряжение (в режиме DCV) каждой ячейки (батареи).
    3. В исправном состоянии Ni-Cd и Ni-MH выдают 1.2-1.4 В, а Li-Ion — 3.6-3.8 В.
    4. Соберите АКБ и разрядите её до явного замедления вращения шуруповёрта.
    5. Вновь разберите и выполните замер — снижение напряжения до уровня 0.4-0.8 В говорит об износе такой ячейки.

    Как восстановить аккумулятор шуруповёрта?

    1. Полная замена АКБ на новый

    Лучше всего выполнить замену аккумулятора — так вы получите большой запас ёмкости для продолжительной службы электроинструмента. В магазине вы найдёте полный набор АКБ для моделей от всевозможных производителей.

    2. Частичная замена изношенных ячеек

    Заменить каждую ячейку по отдельности будет экономически целесообразнее при наличии свободного времени. Здесь вам потребуется навык точечной сварки — спайка ячеек обычным паяльником может изменить их характеристики и испортить!

    3. Устранение «эффекта памяти»

    Если после полной зарядки шуруповёрт быстро расходует заряд аккумулятора и спустя время продолжает понемногу работать, то вы столкнулись с «эффектом памяти» Ni-Cd или Ni-MH.

    Устранить «эффект памяти» в шуруповёрте поможет его калибровка (тренировка):
    • зарядите до 100% (по возможности низким током);
    • полностью разрядите инструмент подачей на вращение малой мощности длительное время;
    • повторите 3-5 раз такую процедуру, и аккумулятор вернётся к жизни.

    4. Экзотиеческий метод для профи

    Аккумуляторы для шуруповёрта изнашиваются из-за потери вещества электролита — он просто выкипает при активном использовании электроинструментом. Разрезав пластины соединения и проделав отверстие в ячейке, можно долить химический состав. После герметизации корпуса АКБ вновь готов к работе.

    Если вы знаете ещё способы, то напишите их в комментарии или отправьте сообщение нам ВКонтакте @NeovoltRu.

    Подпишитесь в группе на новости из мира гаджетов, узнайте об улучшении их автономности и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.

    Читайте также:  Мультиклапан ГБО - назначение, устройство, принцип работы и установка
    Ссылка на основную публикацию
    Мини ТЭЦ для дома на твердом и биотопливе мощность, стоимость
    Домашняя ТЭЦ на микротурбине; DIY Сделай сам Идеальный источник тепла и электроэнергии для дома В наших климатических условиях дом должен...
    Методика снятия, ремонта и замены замка капота ВАЗ 2107
    Как открыть капот ВАЗ 2107 регулировка замка, замена тросика, установка воздухозаборника, инструкции Капот является неотъемлемой частью любого автомобиля. На ВАЗ...
    Методы диагностики и обследования Болезни артерий Сосудистый центр им
    Методы диагностики и лечения; Новокузнецкий филиал государственного бюджетного учреждения здравоохра Методы лечения: Подбор терапии пациентам с хронической сердечной недостаточностью при...
    Мини-бар своими руками пошаговые инструкции
    Как сделать автомойку своими руками, советы, рекомендации У автовладельцев, которые имеют собственный небольшой участок земли или гараж, оборудованный канализацией, есть...

    Миф чем выше напряжение аккумулятора, тем мощнее шуруповерт

    Уроки Ардуино

    Данный раздел имеет довольно таки большую значимость, если делать что то не так, как написано здесь, можно получить сгоревшую плату или глюки, причины которых не так очевидны и отследить их очень трудно.

    Перейдем к питанию платы: есть три способа питать Ардуино и вообще Ардуино-проект в целом, у каждого есть свои плюсы/минусы и особенности:

    • Бортовой USB порт
    • “Сырой” вход на микроконтроллер 5V
    • Стабилизированный вход Vin

    Что касается земли (пины GND) то они все связаны между собой и просто продублированы на плате, это нужно запомнить. Пины 3.3V, 5V и GND являются источником питания для датчиков и модулей, но давайте рассмотрим особенности.

    Питание от USB

    Питание от USB – самый плохой способ питания ардуино-проекта. Почему? По линии питания +5V от USB стоит диод, выполняющий защитную функцию: он защищает порт USB компьютера от высокого потребления тока компонентами ардуино-проекта или от короткого замыкания (КЗ), которое может произойти по случайности/криворукости любителей ковырять макетные платы. КЗ продолжительностью менее секунды не успеет сильно навредить диоду и всё может обойтись, но продолжительное замыкание превращает диод в плавкий предохранитель, выпускающий облако синего дыма и спасающий порт компьютера от такой же участи.

    Слаботочный диод имеет ещё одну неприятную особенность: на нём падает напряжение, причем чем больше ток потребления схемы, тем сильнее падает напряжение питания. Пример: голая ардуина без всего потребляет около 20 мА, и от 5 Вольт на юсб после диода нам остаётся примерно 4.7 Вольт. Чем это плохо: опорное напряжение при использовании АЦП крайне нестабильно, не знаешь, что измеряешь (да, есть способ измерения опорного напряжения, но делать это нужно вручную). Некоторые железки чувствительны к напряжению питания, например LCD дисплеи: при питании от 5V они яркие и чёткие, при 4.7 вольтах (питание от юсб) они уже заметно теряют яркость. Если подвигать сервоприводом или включить реле – на диоде упадет ещё больше и дисплей практически погаснет. При коротких мощных нагрузках (выше 500-600ма) микроконтроллер перезапустится, так как напряжение упадет ниже плинтуса.

    Вы наверное предложите заменить диод перемычкой, чтобы питать схему от USB большим током, например от powerbank’а. Так делать тоже нельзя, потому что дорожки на плате не рассчитаны на большие токи (дорожка 5V очень тонкая и идёт через всю плату). Я думаю, что можно будет снять 1-2 Ампера с пина 5V, но, скорее всего, напряжение просядет. Также при КЗ вы скорее всего попрощаетесь с дорожкой вообще. Питайте силовую часть схемы либо отдельно, либо от того же источника питайте Arduino.

    Питание в Vin

    Питание в пин VinGND) – более универсальный способ питания ардуино-проекта, этот пин заводит питание на бортовой стабилизатор напряжения ардуино, на китайских платах обычно стоит AMS1117-5.0. Это линейный стабилизатор, что имеет свои плюсы и минусы. Он позволяет питать ардуино и ардуино-проект от напряжения 7-12 Вольт (это рекомендуемый диапазон, так то питать можно от 5 до 20 Вольт). Стабилизатор устроен так, что он выдает хорошее ровное напряжение с минимальными пульсациями, но всё лишнее напряжение превращает в тепло. Если питать плату и один миниатюрный сервопривод от 12 Вольт, то при активной работе привода стабилизатор нагреется до 70 градусов, что уже ощутимо горячо. По некоторым расчетам из даташита можем запомнить некоторые цифры:

    • При напряжении 7 Вольт (таких блоков питания я не встречал) в Vin можно снять с пина 5V до 2A, больше – перегрев. Отлично сработают два литиевых аккумулятора
    • При 12 Вольтах на Vin можно снять с пина 5V не более 500мА без риска перегрева стабилизатора.

    Питание в пин Vin возможно только в том случае, если в Ардуино проекте (имеется в виду плата Ардуино и железки, подключенные к 5V и GND) не используются мощные потребители тока, такие как сервоприводы, адресные светодиодные ленты, моторчики и прочее. Что можно: датчики, сенсоры, дисплеи, модули реле (не более 3 одновременно в активном состоянии), одиночные светодиоды, органы управления. Для проектов с мощной 5 Вольтовой нагрузкой для нас есть только третий способ.

    Питание в 5V

    Питание в пин 5VGND) – самый лучший вариант питать плату и ардуино-проект в целом, но нужно быть аккуратным: пин идёт напрямую на микроконтроллер, и на него действуют некоторые ограничения:

    • Максимальное напряжение питания согласно даташиту на микроконтроллер – 5.5V. Всё что выше – с большой вероятностью выведет МК из строя;
    • Минимальное напряжение зависит от частоты, на которой работает МК. Вот строчка из даташита: 0 – 4 MHz @ 1.8 – 5.5V, 0 – 10 MHz @ 2.7 – 5.5V, 0 – 20 MHz @ 4.5 – 5.5V. Что это значит: большинство Arduino-плат имеют источник тактирования на 16 MHz, то есть Arduino будет стабильно работать от напряжения

    4 Вольта (20 МГц – 4.5V, 16 МГц – около 4V). Есть версии Arduino на 8 МГц, они будут спокойно работать от напряжения 2.5V.

    Самый популярный вариант – USB зардяник от смартфона, их легко достать, диапазон токов от 500ма до 3А – справится практически с любым проектом. Отрезаем штекер и паяем провода на 5V и GND, предварительно определив, где плюс/минус при помощи мультиметра или по цвету: красный всегда плюс, чёрный – земля, при красном плюсе земля может быть белого цвета. При чёрной земле плюс может быть белым, вот так вот. Точно туда же паяем все датчики/модули/потребители 5 Вольт. Да, не очень удобно это паять, но при известной схеме можно аккуратно собрать всё питание в отдельные скрутки и припаять уже их. Пример на фото ниже. Источником питания там является отдельное гнездо micro-usb, зелёная плата сразу над дисплеем.

    Автоматический выбор источника

    На платах Arduino (на китайских клонах в том числе) реализовано автоматическое переключение активного источника питания: при подключении внешнего питания на пин Vin линия питания USB блокируется. На схеме это выглядит вот так:

    Питание “мощных” схем

    Резюмируя и повторяя всё сказанное выше, рассмотрим варианты питания проектов с большим потреблением тока.

    Питать мощный проект (светодиоды, двигатели, нагреватели) от 5V можно так: Arduino и потребитель питаются вместе от 5V источника питания:

    Питать мощный потребитель от USB через плату нельзя, там стоит диод, да и дорожки питания тонкие:

    Что делать, если всё-таки хочется питать проект от USB, например от powerbank’а? Это ведь удобно! Всё очень просто:

    Если есть только блок питания на 12V, то у меня плохие новости: встроенный стабилизатор на плате не вытянет больше 500 мА:

    Но если мы хотим питать именно 12V нагрузку, то проблем никаких нет: сама плата Arduino потребляет около 20 мА, и спокойно будет работать от бортового стабилизатора:

    Автономное питание

    Бывает, что нужно обеспечить автономное питание проекта, т.е. вдали от розетки. Давайте рассмотрим варианты:

      Питание в порт USB

        Самый обыкновенный Powerbank, максимальный ток – 500 мА (помним про защитный диод). Напряжение на пине 5V и высокий уровень GPIO в этом случае будет равен

      4.7V (опять же помним про диод). Внимание! У большинства Powerbank’ов питание отключается при нагрузке меньше 200мА, т.е. об энергосбережении можно забыть;

    • Максимальный выходной ток с пина 5V – 500 мА!
  • Питание в пин Vin (или штекер 5.5×2.1 на плате UNO/MEGA)
    • Любой блок питания/зарядник от ноута с напряжением 7-18 Вольт
    • 9V батарейка “Крона” – плохой, но рабочий вариант. Ёмкость кроны очень небольшая;
    • Сборка из трёх литиевых аккумуляторов: напряжение 12.6-9V в процессе разряда. Хороший вариант, также имеется 12V с хорошим запасом по току (3А для обычных, 20А для высокотоковых аккумуляторов) для двигателей или светодиодных лент;
    • “Модельные” аккумуляторы, в основном Li-Po. В целом то же самое, что предыдущий пункт, но запаса по току в разы больше;
    • Энергосбережение – не очень выгодный вариант, т.к. стабилизатор потребляет небольшой, но всё же ток;
    • Максимальный выходной ток с пина 5V: 2А при 7V на Vin, 500ma при 12V на Vin
  • Питание в пин 5V
    • Для стабильных 5V на выходе – литиевый аккумулятор и повышающий до 5V модуль. У таких модулей обычно запас по току 2А, также модуль потребляет “в холостом режиме” – плохое энергосбережение;
    • Литиевый аккумулятор – напряжение на пине 5V и GPIO будет 4.2-3.5V, некоторые модули будут работать, некоторые – нет. Работа МК от напряжения ниже 4V не гарантируется, у меня работало в целом стабильно до 3.5V, ниже уже может повиснуть. Энергосбережение – отличное;
    • Пальчиковые батарейки (ААА или АА) – хороший вариант, 3 штуки дадут 4.5-3V, что граничит с риском зависнуть. 4 штуки – очень хорошо при условии, что батарейки чуть разряжены и суммарное напряжение не превышает 5.5V. новые батарейки дадут 6V, что скорее всего убьёт микроконтроллер;
    • Пальчиковые Ni-Mh аккумуляторы – отличный вариант, смело можно ставить 4 штуки, они обеспечат нужное напряжение на всём цикле разряда (до 4V). Также имеют хороший запас по току, можно даже адресную ленту питать.
    • Платы с кварцем (тактовым генератором) на 8 МГц позволяют питать схему от низкого напряжения (2.5V, как мы обсуждали выше), отлично подойдут те же батарейки/аккумуляторы, также для маломощные проекты можно питать от литиевой таблетки (3.2-2.5V в процессе разряда).
    • Максимальный выходной ток с пина 5V ограничен током источника питания
  • Arduino как источник питания

    Важный момент, который вытекает из предыдущих: использование платы Arduino как источник питания для модулей/датчиков. Варианта тут два:

    • Питание датчиков и модулей от 5V
      • При питании платы от USB – максимальный ток 500 мА
      • При питании платы в Vin – максимальный ток 2 А при Vin 7V, 500 мА при Vin 12V
      • При питании платы в 5V – максимальный ток зависит от блока питания
    • Питание датчиков от GPIO (пинов D и A) – максимальный ток с одного пина: 40 мА, но рекомендуется снимать не более 20 мА. Максимальный суммарный ток с пинов (макс. ток через МК) не должен превышать 200 мА. Допускается объединение нескольких ног для питания нагрузки, но состояние выходов должно быть изменено одновременно (желательно через PORTn), иначе есть риск спалить ногу при её закорачивании на другую во время переключения. Либо делать ногу входом (INPUT), вместо подачи на неё низкого (LOW) сигнала. В этом случае опасность спалить ноги отсутствует.

    Помехи и защита от них

    Если в одной цепи питания с Ардуино стоят мощные потребители, такие как сервоприводы, адресные светодиодные ленты, модули реле и прочее, на линии питания могут возникать помехи, приводящие к сильным шумам измерений с АЦП, а более мощные помехи могут дергать прерывания и даже менять состояния пинов, нарушая связь по различным интерфейсам связи и внося ошибки в показания датчиков, выводя чушь на дисплеи, а иногда дело может доходить до перезагрузки контроллера или его зависания. Некоторые модули также могут зависать, перезагружаться и сбоить при плохом питании, например bluetooth модуль спокойно может зависнуть и висеть до полной перезагрузки системы, а радиомодули rf24 вообще не будут работать при “шумном” питании.

    Более того, помеха может прийти откуда не ждали – по воздуху, например от электродвигателя, индуктивный выброс ловится проводами и делает с системой всякое. Что же делать? “Большие дяди” в реальных промышленных устройствах делают очень много для защиты от помех, этому посвящены целые книги и диссертации. Мы с вами рассмотрим самое простое, что можно сделать дома на коленке.

    • Питать логическую часть (Ардуино, слаботочные датчики и модули) от отдельного малошумящего блока питания 5V, а ещё лучше питаться в пин Vin от блока питания на 7-12V, так как линейный стабилизатор даёт очень хорошее ровное напряжение. Для корректной работы устройств, питающихся отдельно (драйверы моторов, приводы) нужно соединить земли Ардуино и всех внешних устройств;
    • Поставить конденсаторы по питанию платы, максимально близко к пинам 5V и GND: электролит 6.3V 470 uF (мкФ) и керамический на 0.1-1 мкФ. Это сгладит помехи даже от сервоприводов;
    • У “выносных” на проводах элементах системы (кнопки, крутилки, датчики) скручивать провода в косичку, преимущественно с землёй. А ещё лучше использовать экранированные провода, экран естественно будет GND. Таким образом защищаемся от электромагнитных наводок;
    • Соединять все земли одним толстым проводом и по возможности заземлять на центральное заземление;
    • Металлический и заземленный корпус устройства (или просто обернутый фольгой �� ), на который заземлены все компоненты схемы – залог полного отсутствия помех и наводок по воздуху.

    На практике самая подлая помеха обычно приходит при коммутации индуктивной нагрузки при помощи электромагнитного реле: от такой помехи очень сложно защититься, потому что приходит она по земле, то есть вас не спасёт даже раздельное питание проекта. Что делать?

    • Для цепей постоянного тока обязательно ставить мощный диод обратно-параллельно нагрузке, максимально близко к клеммам реле. Диод примет (замкнёт) на себя индуктивный выброс от мотора/катушки;
    • Туда же, на клеммы реле, можно поставить RC цепочку, называемую в этом случае искрогасящей: резистор 39 Ом 0.5 Вт, конденсатор 0.1 мкФ 400V (для цепи 220В);
    • Для сетей переменного тока использовать твердотельное (SSR) реле с детектором нуля (Zero-cross detector), они же называются “бесшумные” реле. Если в цепи переменного тока вместо реле стоит симистор с оптопарой, то оптопару нужно использовать опять же с детектором нуля, такая оптопара, как и SSR zero-cross будут отключать нагрузку в тот момент, когда напряжение в сети переходит через ноль, это максимально уменьшает все выбросы.

    Подробнее об искрогасящих цепях можно почитать вот в этой методичке

    Главный Глупый Вопрос

    У новичков в электронике, которые не знают закон Ома, очень часто возникают вопросы вида: “а каким током можно питать Ардуино“, “какой ток можно подать на Ардуино“, “не сгорит ли моя Ардуина от от блока питания 12V 10A“, “сколько Ампер можно подавать на Arduino” и прочую чушь. Запомните: вы не можете подать Амперы, вы можете подать только Вольты, а устройство возьмёт столько Ампер, сколько ему нужно. В случае с Arduino – голая плата возьмёт 20-22 мА, хоть от пина 5V, хоть от Vin. Ток, который указан на блоке питания, это максимальный ток, который БП может отдать без повреждения/перегрева/просадки напряжения. Беспокоиться стоит не об Arduino, а об остальном железе, которое стоит в схеме и питается от блока питания, а также о самом блоке питания, который может не вывезти вашу нагрузку (мотор, светодиоды, обогреватель). Общий ток потребления компонентов не должен превышать возможностей источника питания, вот в чём дело. А будь блок питания хоть на 200 Ампер – компоненты возьмут ровно столько, сколько им нужно, и у вас останется “запас по току” для подключения других. Если устройство питается напряжением, то запомните про максимальный ток источника питания очень простую мысль: кашу маслом не испортишь.

    Блок питания для шуруповерта 12в своими руками

    Приобретая аккумуляторный шуруповерт, практически никто не задумывается о сроке службы аккумуляторных батарей. В зависимости от производителя и стоимости инструмента, аккумуляторы могут прослужить исправно и 5 лет, и менее года. Особенно это касается инструмента от безымянного производителя из Китая (а таких на рынке подавляющее большинство). Замена аккумуляторных батарей на новые по финансовым затратам сравнима с покупкой нового инструмента, поэтому часто возникает потребность сделать блок питания для шуруповерта 18В или 12В своими руками.

    Требования к источнику питания

    Вне зависимости от того, на какое напряжение рассчитан шуруповерт, к блоку питания предъявляются особые требования: при высокой нагрузке на инструмент, например, при закручивании длинных шурупов в твердую древесину или в режиме сверления ток потребления двигателя может повышаться до десятка ампер. Если в режиме холостого хода потребляемый ток составляет не более 1-2 А и достаточно блока питания с мощностью 30-40 Вт, то для нормальной работы требуется мощность порядка 200 Вт.

    С аккумуляторными батареями все просто. Специфика их работы такова, что они способны на короткое время выдавать большие токи, восстанавливая рабочее напряжение во время простоя. Возникает вопрос: зарядное устройство для любого шуруповёрта имеет малый вес и габариты, почему бы не использовать его в качестве источника напряжения? Ответ – однозначно нет. Зарядное устройство рассчитано на выдачу малого тока в течение длительного времени, нам же требуются большие токи на короткий срок. Поэтому внешний блок питания должен иметь запас по мощности.

    Конструкция блока питания

    Самодельные БП для шуруповертов могут иметь различные варианты схемотехнического и конструктивного исполнения:

    • Встроенные в корпус стандартных аккумуляторов;
    • В виде отдельного блока;
    • Импульсные;
    • Трансформаторные.

    Теперь подробнее о каждом из них.

    Встроенные

    Несомненное преимущество встроенных устройств заключается в том, что из внешних деталей остается только лишь сетевой шнур маленького сечения. Самостоятельно изготовить такой блок питания под силу не всем. Тут требуется немалый опыт, поскольку малогабаритные мощные блоки питания можно сделать только по импульсной схеме. Трансформатор необходимой мощности классической конструкции в рукоять шуруповерта не поместится, а с подходящими габаритами будет иметь мощность в единицы ватт, чего хватит только для холостой работы.

    Отдельный блок

    Ввиду того, что блок питания находится вне корпуса шуруповерта, к нему не предъявляются ограничения по габаритам и массе, поэтому он может быть выполнен с желаемым запасом по мощности. Единственное ограничение – длина и площадь поперечного сечения соединительных шнуров между инструментом и источником питания, ведь, согласно закона Ома, при снижении напряжения при одинаковой мощности потребления растет ток, поэтому низковольтный шнур питания должен иметь большее сечение, чем сетевой на 220 В. К этому добавляется также требование по минимизации падения напряжения на проводах. Толстый шнур имеет повышенную массу и жесткость, что уменьшает удобство пользования инструментом.

    Импульсные источники

    Импульсные источники питания характеризуются тем, что понижающий трансформатор в них работает на повышенной частоте, в результате чего имеет минимальные габариты при той же мощности. Общие габариты устройства вполне позволяют разместить конструкцию в стандартном корпусе вместо неисправных аккумуляторов. Из минусов – сложность конструкции для самостоятельного повторения.

    Трансформаторные устройства

    Блоки питания на трансформаторах еще не потеряли своей актуальности ввиду простоты изготовления и надежности. Единственный минус таких изделий – большие габариты и масса, но это не существенно, когда устройство выполнено в виде отдельного блока и установлено стационарно.

    Устройства на трансформаторах получили преимущественное распространение среди самодельных устройств, поэтому будут рассмотрены самым подробным образом.

    Конструкция трансформаторного блока питания

    Данное устройство характеризуется наличием следующих составных частей:

    • Силовой трансформатор;
    • Выпрямитель:
    • Фильтр питания;
    • Стабилизатор напряжения.

    Силовой трансформатор представляет собой самую габаритную и тяжелую часть устройства. Он предназначен для преобразования высокого входного напряжения в низкое, соответствующее требованиям подключаемой нагрузки.

    Задача выпрямителя состоит в преобразовании переменного напряжения в постоянное. Наибольшей эффективностью обладают мостовые схемы выпрямления, состоящие из четырех диодов или монолитного выпрямительного моста.

    Фильтр сглаживает пульсации напряжения после выпрямительного моста.

    Теоретически этих элементов достаточно для работы шуруповерта, но скачки напряжения в питающей сети, его просадки из-за увеличения нагрузки могут привести к нестабильной работе двигателя, а увеличение сверх нормы – к выходу из строя.

    Задача стабилизатора состоит в поддержании стабильного напряжения на выходе, вне зависимости от величины нагрузки и уровня напряжения питающей сети.

    Для самостоятельной сборки можно порекомендовать простую проверенную схему стабилизатора, которая отличается минимумом деталей и доступна для повторения любому, кто умеет держать в руках паяльник и пользоваться измерительными приборами.

    В приведенной схеме можно увеличить емкость конденсатора до 1000-2000 мкФ, а транзисторы использовать типов КТ807, КТ819 с любой буквой.

    Основная проблема состоит в подборе трансформатора с необходимым уровнем выходного напряжения. Оно должно быть несколько больше того, что требуется для инструмента, поскольку часть будет оставаться на элементах стабилизатора. Для нормальной работы стабилизатора требуется, чтобы выпрямленное напряжение превышало стабилизированное на несколько вольт. Слишком много нельзя, поскольку его излишек будет падать на ключевом транзисторе, нагревая его, а низкое значение в ряде случаев приведет к снижению выходного напряжения.

    Обратите внимание! После мостового выпрямителя и фильтра значение постоянного напряжение будет превышать входное переменное примерно в 1.4 раза.

    Таким образом, блок питания для шуруповерта на 12В требует трансформатор с выходным напряжением 12-14 В переменного тока.

    Важно! Транзистор обязательно должен крепиться на радиатор охлаждения.

    Использование блока питания компьютера

    Собрать блок питания для шуруповерта с двигателем 12В своими руками рационально из блока питания от компьютера. Стандартные напряжения материнской платы и внешних устройств компьютера составляют:

    • + 3.3 В;
    • + 5 В;
    • + 12 В;
    • – 12 В.

    Стандартные БП способны выдавать в цепи +12 В ток до 10-15 А, что абсолютно приемлемо для большинства моделей шуруповертов. На разъемах питания необходимое напряжение присутствует на черном (масса) и желтом проводах. Остальные провода не нужны, и их желательно отпаять прямо на плате блока питания, чтобы они не мешались и не создавали повода для замыкания.

    В некоторых случаях, возможно, использовать компьютерный блок питания для шуруповерта 14 В. Правда будет наблюдаться небольшое падение мощности. А вот шуруповерты на 16 и 18 Вольт с такими устройствами работать не будут. При наличии квалификации можно внести в схему стандартного блока питания изменения с целью повышения напряжения, но рядовому пользователю такое обычно не под силу.

    Обратите внимание! Все сказанное относится к устаревшим, но еще встречающимся блокам питания АТ. Более современные ATX требуют некоторых переделок для возможности включения, поскольку оно организовано на материнской плате компьютера специальной схемой.

    При должной аккуратности это можно сделать самостоятельно. Для этого на самом большом разъеме устройства нужно найти провод зеленого цвета. Замыкая его через кнопку на черный провод массы, можно включить блок питания.

    Используя любой источник, не требуется вносить каких-либо изменений в конструкцию инструмента. Для подачи напряжения следует воспользоваться корпусом от неисправных аккумуляторов, просверлив в нем отверстия для питающих проводов. Сами проводники нужно аккуратно, не расплавив пластик, припаять к выходным клеммам, строго соблюдая полярность.

    Собранную конструкцию требуется поместить в подходящий корпус и, при необходимости, снабдить ручкой для переноски.

    Бестрансформаторные устройства

    В интернете можно встретить рекомендации по переделке пускорегулирующих устройств мощных люминесцентных ламп (экономок) для использования в качестве блока питания шуруповерта. Но мало где говорится, что такие конструкции имеют гальваническую связь с сетью переменного тока и пользоваться ими небезопасно. Не следует повторять подобные конструкции и подвергаться риску удара электрическим током.

    Конструирование внешнего источника может послужить временной мерой в качестве замены аккумуляторов, поскольку именно мобильность и независимость от сети являются основным преимуществом аккумуляторных устройств. Неудобно, когда шнур питания путается и мешает работать, особенно в труднодоступных местах.

    Видео

    Можно ли восстановить аккумулятор шуруповерта? 4 метода

    Восстановить аккумулятор шуруповёрта можно своими силами. Вы сэкономите до 30% от общей стоимости вашего инструмента, если проследуете этой инструкции.

    Руководство поможет восстановить автономность любых моделей шуруповёртов (18 вольт, Макита 12 вольт, Макита 14.4, Метабо, Хитачи, iMax B6 и так далее) с батареями типа Ni-Cd (NiCd), Ni-MH и Li-Ion. Следует внимательно отнестись к рекомендациям и уточнениям относительно разных конструкций электроинструмента.

    Что нужно знать, прежде чем начать восстановление аккумулятора шуруповёрта?

    1. Большинство элементов питания в электроинструменте имеет одинаковые конструктивные особенности (последовательное соединение компактных ячеек).
    2. Необходимо обращать внимание на тип АКБ (Ni-Cd, Ni-MH и Li-Ion) и ёмкость (в мАч).
    3. При разборке блока аккумуляторов нужно отслеживать полярность (+/-) соединений.
    4. От перегрева «банки» защищены термистором с припаянным резистором.
    5. Восстановить элемент питания типа Li-Ion невозможно (как определить его исправность, смотрите ниже).

    Определяем неисправность аккумулятора шуруповёрта

    1. Зарядите АКБ до полного уровня, снимите с зарядки и разберите для доступа к ячейкам.
    2. С помощью мультиметра измеряем напряжение (в режиме DCV) каждой ячейки (батареи).
    3. В исправном состоянии Ni-Cd и Ni-MH выдают 1.2-1.4 В, а Li-Ion — 3.6-3.8 В.
    4. Соберите АКБ и разрядите её до явного замедления вращения шуруповёрта.
    5. Вновь разберите и выполните замер — снижение напряжения до уровня 0.4-0.8 В говорит об износе такой ячейки.

    Как восстановить аккумулятор шуруповёрта?

    1. Полная замена АКБ на новый

    Лучше всего выполнить замену аккумулятора — так вы получите большой запас ёмкости для продолжительной службы электроинструмента. В магазине вы найдёте полный набор АКБ для моделей от всевозможных производителей.

    2. Частичная замена изношенных ячеек

    Заменить каждую ячейку по отдельности будет экономически целесообразнее при наличии свободного времени. Здесь вам потребуется навык точечной сварки — спайка ячеек обычным паяльником может изменить их характеристики и испортить!

    3. Устранение «эффекта памяти»

    Если после полной зарядки шуруповёрт быстро расходует заряд аккумулятора и спустя время продолжает понемногу работать, то вы столкнулись с «эффектом памяти» Ni-Cd или Ni-MH.

    Устранить «эффект памяти» в шуруповёрте поможет его калибровка (тренировка):
    • зарядите до 100% (по возможности низким током);
    • полностью разрядите инструмент подачей на вращение малой мощности длительное время;
    • повторите 3-5 раз такую процедуру, и аккумулятор вернётся к жизни.

    4. Экзотиеческий метод для профи

    Аккумуляторы для шуруповёрта изнашиваются из-за потери вещества электролита — он просто выкипает при активном использовании электроинструментом. Разрезав пластины соединения и проделав отверстие в ячейке, можно долить химический состав. После герметизации корпуса АКБ вновь готов к работе.

    Если вы знаете ещё способы, то напишите их в комментарии или отправьте сообщение нам ВКонтакте @NeovoltRu.

    Подпишитесь в группе на новости из мира гаджетов, узнайте об улучшении их автономности и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.

    Читайте также:  Регулировка клапанов на Рено Логан инструкция с фото и видео; Авторемонт, замена своими силами
    Ссылка на основную публикацию
    Мини ТЭЦ для дома на твердом и биотопливе мощность, стоимость
    Домашняя ТЭЦ на микротурбине; DIY Сделай сам Идеальный источник тепла и электроэнергии для дома В наших климатических условиях дом должен...
    Методика снятия, ремонта и замены замка капота ВАЗ 2107
    Как открыть капот ВАЗ 2107 регулировка замка, замена тросика, установка воздухозаборника, инструкции Капот является неотъемлемой частью любого автомобиля. На ВАЗ...
    Методы диагностики и обследования Болезни артерий Сосудистый центр им
    Методы диагностики и лечения; Новокузнецкий филиал государственного бюджетного учреждения здравоохра Методы лечения: Подбор терапии пациентам с хронической сердечной недостаточностью при...
    Мини-бар своими руками пошаговые инструкции
    Как сделать автомойку своими руками, советы, рекомендации У автовладельцев, которые имеют собственный небольшой участок земли или гараж, оборудованный канализацией, есть...
    Adblock detector